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Deep learning - and its failures

More and more applications in science (and real 
life!)

How can we find its weaknesses and know how it 
might fail?

- Can only know how well it will do on the data 
we already have, may not be real world

- More sensitive to changes that would not fool 
a human

- We might be blind to biases in the training set

These issues have consequences.

For science: 

- Hard to understand biases
- Hasd to quantify errors

Source: Wang 2017
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AI in science and society

AI coming soon to your life:

Hiring and firing

Financial access

University admission

School rankings

Legal system

“The best minds of my generation 
are thinking about how to make 
people click ads. (That sucks.)”

- Jeff Hammerbacher

Advertising
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Fairness, 
transparency, 
accountability
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Bias in AI

Challenges:

Framing the problem

Training data biased

Lack of social context
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AI ethics
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Interpreting neural networks

• Interpreting a trained ML model is 
vital to validate that the 
representation has accurately 
captured the general features of the 
data and not overfit. 

• High performance is mediated by 
generalisability.

• An important step in ensuring the 
reproducibility of results.

• Cars, medicine, courts, finance… 
urgent!

Need something Explanatory and 
Interpretable 
SEE: Montavon, Samek and Muller (2018) and Lipton 
(2016)
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Neural networks - simple but complex

Source: Veronez 2011
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Convolutional neural networks - less simple but not too complex

Source: Micheal Lanham 2018
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http://www.youtube.com/watch?v=f0t-OCG79-U
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What’s going on?

Challenges with ANNs:

• Dimensionality of inputs enormous
• Trainable weights ~106 - 109

• Hundreds of feature maps
• Highly abstract and non-linear
• Distribution of inputs, and gaps, hard to 

comprehend

Simonyan and Zisserman (2014)
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First attempt: Convolutional kernels
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Feature maps
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Input optimisation

Take a trained model and train the 
inputs to maximise the activation 
for a particular class (maximise the 
output of a particular neuron).

Image: Varma and Das 2018
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Deep Dream

Pouff: https://www.youtube.com/watch?v=DgPaCWJL7XI

http://www.youtube.com/watch?v=DgPaCWJL7XI
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Occlusion sensitivity

Calculate the sensitivity to a 
particular pixel: i.e. 

d neuron/d pixel_i

Very noisy!

Smilkov et al  2017
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Other attempts

Deconvolution: Zeiler and Fergus 
2014  

Guided backprop: Gradient of a 
particular neuron, through a ReLU. 
(Springenberg et al 2015).

Deconvnet: Zeiler and Fergus 2014

Springenberg et al  2015
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Occlusion sensitivity

Smoothgrad: Smilkov 2017

Adding noise to get more signal - 
sample an image many times (with 
added noise) and display the mean 
sensitivity map

Smilkov et al  2017
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Saliency mapping

E.g. Grad-CAM (Selvaraju 2017)

Take activations at last convolutional 
layer, determine importance to score

Pool over feature maps -> 
importance

Sum maps weighted by importance

Upscale and project back onto input 
image. 

Selvaraju et al 2017
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Saliency mapping: 
State of the art

Input Integrated Gradients Occlusion Grad-CAM
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Deconvnet

Pattern Attribution

SmoothGradInput

Guided Backprop PatternNet Deep Taylor

LRP

Saliency mapping
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Sensitivity Analysis

How sensitive is the network to:

• A transformation of the data?
• Some inherent property of the data?

Can we use this to identify weaknesses?

Consider the correct-class probability as the key 
metric; could use another key measure.

Dog: 93% Cat: 96%

Cat: 99%Dog: 97%

Colour saturation: 50%
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Sensie

Jacobs 2020

Available on Github

Automates sensitivity analysis - 

if you know what questions to ask!
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Sensie: Use case (MNIST)
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Sensie: Use case (CIFAR10)



ARC CENTRE OF EXCELLENCE FOR ALL SKY ASTROPHYSICS IN 3D 27

Querying an AI astronomer

Jacobs+ 2019b
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Querying an AI astronomer
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False positives - Why?
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Feature activations
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Saliency mapping: Grad-CAM
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Grad-CAM - negative
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Probing with Sensie: Perturb test set
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Results: Colour
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Results: Blur (seeing)

Effect on sims
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Effect on accuracy
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Results: Occlusion
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Results: PSF
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Results: Magnitude
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Results: Magnitude
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Results: Einstein 
Radius
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Conclusions

Learned a few things: 

Good/expected: 

- Not sensitive to Einstein radius
- Robust to faint sources
- Sensitive to colour - physics?
- Some idea of a selection function

Bad:

- Sensitive to simulated PSF

Need to improve training set!

github.com/coljac/sensie
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Further application: Redshifts
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