Charlotte Mason University of Melbourne, 24 July 2019

CENTER FOR ASTROPHYSICS

HARVARD & SMITHSONIAN

What can $Ly\alpha$ emission from galaxies tell us about reionization?

with Tommaso Treu, Mark Dijkstra, Andrei Mesinger, Adriano Fontana, Michele Trenti, Lily Whitler, Keven Ren+ GLASS & BoRG teams

Alvarez (2009

Reionization is intrinsically linked to the formation of the first stars and galaxies

380,000 yrs after BB

0.3 Gyr

1 Gyr 13.7 Gyr

0.6 Gyr

fewer ionizing photons get out of galaxies

more galaxies —

What is the **timeline** and topology of reionization?

Models from Mason+15, constraints from Ouchi+10, McGreer+2014, Mesinger+15, Sobacchi+15

All 50% ionized

Numerous low mass galaxies dominate little bubbles

What is the timeline and **topology** of reionization?

Highly clustered sources — high mass galaxies and/or AGN big bubbles

Observe imprint of neutral IGM on galaxies (+quasars, GRBs)

Forward model to connect Ly α observations to IGM state

Observe neutral hydrogen via 21cm emission

Impact of reionization heating on formation of dwarfs

What is the **timeline** and topology of reionization?

To detect high-redshift galaxies we exploit the IGM and the properties of their young stellar populations

Dominated by massive stars emitting in the UV

'Lyman-break' due to absorption by neutral H blueward of Lyman limit in ISM and IGM

Schmidt+14

We have observed 100s of galaxies at z>6 which can directly trace their environments

Lyman-α emission is produced ubiquitously in young star-forming galaxies

Lyα traces **all** neutral gas along line-of-sight — connects ISM, CGM, IGM

$Ly\alpha$ has a high cross-section for absorption by neutral hydrogen

During reionization, damping wing absorption reduces red side of Lya line

Rapid decline in Ly α visibility at z>6 most likely due to reionization

data from Stark+11, Schenker+14, see also Treu+13, Faisst+14, Tilvi+14, Pentericci+14,+18, de Barros+17

How do we connect $Ly\alpha$ observations to the neutral fraction, \overline{x}_{HI} ?

$$EW \sim f_{line}/f_{cont}$$

see e.g. Dijkstra+11; Bolton & Haehnelt 13; Jensen+13

Mesinger+15

Cardamone+09

Lya line profiles from z~0.2 Green Peas show the impact of ISM radiative transfer

flux

Lya

normalised

Velocity [km/s]

Yang+17

The shape of the $Ly\alpha$ line emerging from the ISM affects the probability of transmission through the IGM

Lya photons must diffuse in frequency to escape dense ISM

denser Λ_{V} ISM -1000-500 $\left(\right)$ 500 1000 Velocity Offset [km/s]

Δv

e.g. Adams 1972, Neufeld 1990, Verhamme+2006

The shape of the $Ly\alpha$ line emerging from the ISM affects the probability of transmission through the IGM

e.g. Dijkstra & Wyithe 2010, Dijkstra, Mesinger & Wyithe 2011

The shape of the $Ly\alpha$ line emerging from the ISM affects the probability of transmission through the IGM

What is the **timeline** and topology of reionization?

Observe imprint of neutral IGM on galaxies (+quasars, GRBs) Forward model to connect Lyα observations to IGM state

Forward-modeling framework combining realistic IGM topologies and galaxy properties

 $\mathcal{T}(\overline{x}_{\mathrm{HI}}, M_h, \Delta v) = \int dv J_{\alpha}(M_h, \Delta v, v) e^{-\tau_{\mathrm{IGM}}(\overline{x}_{\mathrm{HI}}, M_h, v)}$

Mason+2018a

Simulation halos are populated with galaxy properties via empirical models

Simulation halos are populated with galaxy properties via empirical models

high EW, low Δv

low EW, high Δv

Transmission of $Ly\alpha$ depends on galaxy properties via environment and velocity offset

Mostly ionized

Bayesian inference on Ly α observations (via EW distribution) to infer the neutral fraction

forward model p(EW_{obs} | **X**н, M_{UV})

p(X_{HI} observations)?

As the IGM becomes more neutral $Ly\alpha$ EWs decrease - most pronounced for faint galaxies

Using the full distribution of $Ly\alpha$ EW at $z\sim7$ places tight constraints on the neutral fraction

What about z>7?

data from Stark+11, Schenker+14, see also Treu+13, Faisst+14, Tilvi+14, Pentericci+14,+18, de Barros+17

Efficient search for $z > 7 \text{ Ly} \alpha$ in faint galaxies behind lensing clusters

No S/N > 5Lyα detected 😰 Median EW_{lim} < 58Å

KMOS lens-amplified spectroscopic survey

To be continued with JWST spectroscopy... ERS (PI Treu)

- 3 confirmed with ALMA

Following-up HST photometric + grism targets

n prep)

Using full non-detection spectra in Bayesian inference, marginalize over redshift and linewidth

The universe is getting very neutral at z > 6...

Mason+19a

Puzzling z>6 Lyα detections hold keys to local reionization process?

Mason+18b

Lyα from z>7.5 UV bright galaxies extreme Lyα emitters? larger ionized bubbles?

blue Ly α peaks at z>6

direct evidence of >2 Mpc ionized bubble?

Spatial fluctuations in Lyα detections patchy reionization? Lyα emission properties? Hoag+19a (incl CM)

Jung+19

21cmFAST models cannot explain high $Ly\alpha$ fraction in UV bright galaxies — emitted EW must be high and/or larger bubbles?

But the brightest galaxies do not necessarily live in the most massive halos

Ren, Trenti & Mason 2019

Lily Whitler (ASU)

Lily Whitler (ASU)

Blue Lya peak at z>6 due to large ionized bubble?

HII region must be >2 Mpc so Lya is redshifted far into damping wing

What is prevalence of blue peaks at z>6?

Are they spatially correlated? i.e. in the ionized regions? Require high resolution $Ly\alpha$ spectroscopy to disentangle ISM, CGM and IGM during reionization

High spectral resolution survey to map ionizing bubbles via $Ly\alpha$ lineshapes

MMT/Binospec R~4500 (<70 km/s) z~5-7, ~200 targets per mask

Evolving Lyα transmission contains information about **reionization**

- 100s of z>7 galaxies observed, only a handful have Lyα detections
- IGM and ISM effects included via forward-modelling to make inferences from Lyα observations

Lack of Lyα from z>6 galaxies favors fairly rapid, late reionization

Puzzling Lya observations at z > 6 probe < Mpc reionization effects

- More Lyα from (some)
 bright galaxies than expected
- Lyα lineshapes may probe topology of bubbles

`Holistic' modelling needed to make $Ly\alpha$ a better cosmological tool

