PROBING THE NATURE OF DARK MATTER WITH GALAXY-GALAXY STRONG GRAVITATIONAL LENSING

DOROTA BAYER

SWINBURNE UNIVERSITY OF TECHNOLOGY ASTRO 3D ACTION

MELBOURNE 14 OCTOBER 2020

INTRODUCTION

What is the nature of dark matter?

MACHOs, particle dark matter or modified gravity?

phenomenological models based on free-streaming length

Image credits: Bertone & Tait (2018), Ben Moore (University of Zurich)

HOW CLUMPY/SMOOTH IS THE MASS DISTRIBUTION IN GALACTIC HALOES ?

Image credit: Lovell et al. (2014)

Image credit: Hsueh et al. (2020)

Image credit: Hsueh et al. (2020)

Image credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Image credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Koopmans (2005), Vegetti & Koopmans (2009)

Koopmans (2005), Vegetti & Koopmans (2009)

Gravitational imaging of galactic substructure

SDSS J120602.09+514229.5

SDSS J0946+1006

Image credits: Vegetti et al. (2010b, 2012)

Image credit: Hsueh et al. (2020)

NOVEL STATISTICAL APPROACH

Observed surface-brightness anomalies
GRF potential perturbations & mock power spectra
Statistical comparison

Upper-limit constraints on sub-galactic mass structure (1-10 kpc scales)

SURFACE-BRIGHTNESS ANOMALIES

SLACS lenses

Image credit: A. Bolton, SLACS team

SLACS lens systems

Image credit: A. Bolton, SLACS team

Bayer et al. (submitted to MNRAS)

Step 2: Smooth lens modeling

Step 3: Residuals

Step 4: Residual power spectrum

UNDERLYING MASS STRUCTURE

GRF potential perturbations

 $P_{\delta\psi}(k) = \frac{N_{\text{pix}}}{2\sum_{k} k^{-\beta}} \times \sigma_{\delta\psi}^{2} \times k^{-\beta}$

Bayer et al. (submitted to MNRAS)

Image credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Image credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al. 🤇

 \supset (

Bayer et al. (submitted to MNRAS)

Bayer et al. (submitted to MNRAS)

Template of mock power spectra

Template of mock power spectra

Bayer et al. (submitted to MNRAS)

Bayer et al. (submitted to MNRAS)

DOUBLE RING LENS SYSTEM

SDSS J0946+1006 HST/ACS/814W

EXCLUDED

EXCLUDED

EXCLUDED

EXCLUDED

UPPER LIMIT

ALLOWED

Collaborators

Leon Koopmans Saikat Chatterjee Simona Vegetti John McKean Chris Fassnacht Tomasso Treu

Summary & Future work

<u>Summary</u>

- Novel approach to modelling small-scale structure in galactic haloes
- Gaussian random fields density fluctuations
- Power spectrum of surface-brightness anomalies
- First constraints on sub-galactic mass power spectrum (1-10 kpc)

<u>Future work</u>

- Larger sample
- Machine-learning approach
- Comparison to hydrodynamical simulations
 - alternative dark matter models
 - various galaxy formation scenarios