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What is Probability”

® |[n 1812 Laplace published Analytic
Theory of Probabilities

® He suggested the computation of “the ‘f
probability of causes and future
events, derived from past events”

® “Lvery event being determined by the
general laws of the universe, there is
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Comparing datasets

As there is only one Universe 2k KiDS-450
: . . o \N CFHTLenS (MID J16)
(setting aside the Multiverse), we L \N WMAPY+ACT+SPT

make observations of un- MR\ Planckl5
repeatable ‘experiments’ |

Therefore we have to proceed by
inference

Furthermore we cannot check or
probe for biases by repeating the
experiment - we cannot ‘restart the

Universe’ (however much we may - osuming Dlanck AU cosmology
Want tO) — Planck ACDM

If there is a tension (i.e. if two data
sets don't agree), can't take the
data again. Need to instead make
inferences with the data we have

§ 6dFGS
7 SDSS MGS

Alam et al 2016



Rules of Probability

® \We define Probability to have
numerical value

® \Ve define the lower bound, of
logical absurdities, to be zero,
P(2)=0

® \We normalize it so the sum of the

probabilities over all options is
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Bayes [heorem

® Bayes theorem is easily derived from the product
L P(B|A)P(A)
’(B)
® \We have some model M, with some unknown
parameters 6, and want to test it with some data D
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Model Selection

® |f we marginalize over the parameter uncertainties,
we are left with the marginal likelihood, or evidence

evidence Iikeli¢hood _ prior
E=P(D|M)=| P(D|8,M)P(®]M)dO

® |f we compare the evidences of two different models,
~we find the Bayes factor
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Occam S Razor

Best fit likelihood l

Occam factor

® Occam factor rewards the
model with the least
amount of wasted
parameter space (“most
predictive”)
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Bayesian Model

Comparison
® Jeffrey's (1961) scale:
Difference Jeffrey Trotta Odds
AlIn(E)<1 |No evidence NO 3:1
1<AIn(E)<2.5| substantial weak 12:1
2.5<AIn(E)<5 strong moderate | 150:1
AIn(E)>5 decisive strong >150:

® |f model priors are equal, evidence ratio and

Bayes tactor are the same




Information Criteria

® Instead of using the Evidence (which is difficult to
calculate accurately) we can approximate it using an
Information Criteria statistic

® Ability to fit the data (chi-squared) penalised by (lack of)
predictivity

® Smaller the value of the IC, the better the model
~ @ Bayesian | rfor] _Ltr'n o




Complexity

® The DIC penalises models based
on the Bayesian complexity, the

complexily — 2.20¢

ﬂumber Of We”-meaSUFGd sigma = 10.0, complaxity = 0.003 ’
— gigma 1.0, complexity  0.232

parameters ] — sigmra = 0.1, tumk)luxuiv =1.4000 /

® [his can be computed through
the information gain (KL
divergence) between the prior
and posterior, minus a point
estimate

Cb — 9 (DKL [P((9|D7M)P(9|M)] — fKL) '-—10-3 -0/5 —USD —0.25 (..,J 025  0S) Db LOU
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® For the simple gaussian
likelihood, this is given by

Cy = x2(0) — x*(0)

® Average is over posterior




lensions

® [ensions occur when

KiDS-450
tWO datasets have | CFHTLenS (MID J16)
different preterred WMAPOLACTLSPT

values (posterior | Planck15
distributions) for some
common parameters

® [his can arise due to
® random chance

® systematic errors

® undiscovered physics



Diagnostic statistics

® Need to diagnose not If the model is

correct, but If the tension is significant

® Simple test y2 per degree of freedom

® [Cquivalent to p-value test on data
® Only a point estimate though

Raveri (2015): the evidence ratio

~ P(D1UD3|M)
(D1, Dz, M) = P(D1|M)P(Ds| M)

® Joudaki et al (2016): change in DIC
ADIC = DIC(D; U D5) — DIC(D;) — DIC(D>)



| Inear evigence

P(D|M) = Lo
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mple linear moael

Actual universe: y=2z°
Model tested: y=mz+Db

Low—z data:; 1.2
High—z data: 1.0
Combined: 4.1

Image credit: Tamara Davis



Diagnostics |l: The
SUrprise

® Seehars et al (2016): the ‘Surprise’ statistic, based on cross
entropy of two distributions

® Cross entropy given by KL divergence between original (D)
and updated dataset (D.) i
P(6|Ds)

Dicw (P(O1D2)|[POID1)) = | P(O1D2) log | 5572

® Surprise is difference of observed KL divergence relative to
expected

® where expected assumes consistency
S = Dk (P(0]D2)||P(0|D1)) — (D)
® One data set is assumed to be ‘ground-truth’, and information
gain is considered In light on updating, or additional




| Inear tension

. P(D1—|—2|M) e £(1)+2 |F1_|_2| 1/2
P(D1|M)P(D2| M) 5(1)52 Fy|—1/2|Fy|—1/2

X displacement terms

0 Dlsplacement terms equivalent to “Surprise’ -
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| Inear DIC

® ADIC statistic has two components
® Difference in mean parameter (best fit) likelihood
Ax® = Xi12 — X1 — X3
® Difference in penalty term (complexity)
ACy = Cpi42 — Cp1 — Co
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Linear Surprise

® Surprise is difference between information gain (going from data set D,
to D,) and expected information gain

® |n the linear case, KL divergence can be
1
Dk = =3 [X42(0) — X3(0)]

® For the expectation of the information gain, need to average over
possible outcomes for the combined data set

® But in the linear case, this corresponds to the maximum likelihood,
where the information glaln IS evaluated at the posterior maximum

X (D) = 9 [X1+2(9_) Xl(e)}

® This is not the same as the complexity change, even though it looks
similar, as the averaging process happens over the final posterior, not
iIndividual ones

S = Dt — (D) = 5 [\3120) — 5 0) ~ (2@ — CO))]




Pros and Cons




® Simple 5th order polynomial )
model, with second data set el

—  secord set

offset from the first =

® Complexity of each individual
data, and also combined data,
IS the same

® Both measure the 5 free
parameters well

® DIC only changes due to
worsening of ;(2

® The ADIC goes from negative
(agreement) to positive
(tension) as the offset increases

® Odds ratio of agreement
I(Dl, D2) — exp{—ADIC(Dl, D2)/2}




KIDS vs Planck

® All tensions
considered here are In
light of a particular
model

® [f the model is
changed, the tension
may be alleviated

® [his IS not the same
as model selection




Application to lensing
- data

(2016) they Model T(Ss) | ADIC

compared the

, ACDM

cosmological

constraints from — fiducial systematics 210 1.26 Small tension

P|.aI’]CK CMB data — extended systematics 1.80 1.4 Small tension

with KiDS-450

weak |ensing data — large scales 1.90 1.24 Small tension
O Including curvature Neutrino mass 2.40 0.022 Marginal case

worseneo tension, Curvature 850 3.4 Large tension

but allowing for

dynamical dark Dark Energy (constantw) | 0.890 -1.98 Agreement

energy |mproved Curvature + dark energy 210 -1.18 Agreement

agreement



Curvature

KiDS-450 (A\CDM+Q,) 1l
Planck 2015 (A\CDM+Q,) s
KiDS (ACDM)
Planck (ACDM)

KiDS-450
Planck 2015




summary

® \We can estimate the relative probability of tensions
between data sets using ratios of model likelihood
(evidence)

® The Deviance Information Criteria is a simple
method, symmetric to evaluate tensions, being
sensitive to likelihood ratio, but calibrated against
parameter confidence regions

® Comparing tension between CMB and weak lensing
tomography, we find these data sets give better
agreement when dynamical dark energy is included
In the model



