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What is Probability?
• In 1812 Laplace published Analytic 

Theory of Probabilities 

• He suggested the computation of "the 
probability of causes and future 
events, derived from past events” 

• “Every event being determined by the 
general laws of the universe, there is 
only probability relative to us.” 

• “Probability is relative, in part to [our] 
ignorance, in part to our knowledge.” 

• So to Laplace, probability theory is 
applied to our level of knowledge Pierre-Simon Laplace



Comparing datasets
• As there is only one Universe 

(setting aside the Multiverse), we 
make observations of un-
repeatable ‘experiments’  

• Therefore we have to proceed by 
inference 

• Furthermore we cannot check or 
probe for biases by repeating the 
experiment - we cannot ‘restart the 
Universe’ (however much we may 
want to) 

• If there is a tension (i.e. if two data 
sets don’t agree), can’t take the 
data again. Need to instead make 
inferences with the data we have
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Rules of Probability
• We define Probability to have 

numerical value 
• We define the lower bound, of 

logical absurdities, to be zero, 
P(∅)=0 

• We normalize it so the sum of the 
probabilities over all options is 
unity, ∑P(Ai)≡1

A

B

Sum Rule: P(A∪B)=P(A)+P(B)-P(A∩B) 

Product Rule: P(A∩B)=P(A)P(B|A)=P(B)P(A|B)



Bayes Theorem
• Bayes theorem is easily derived from the product 

rule 

• We have some model M, with some unknown 
parameters θ, and want to test it with some data D 

• Here we apply probability to models and 
parameters, as well as data

P(A|B) =
P(B|A)P(A)

P(B)

P(θ|D,M) =
P(D|θ,M)P(θ|M)

P(D|M)

priorposterior
likelihood

evidence



Model Selection
• If we marginalize over the parameter uncertainties, 

we are left with the marginal likelihood, or evidence 

• If we compare the evidences of two different models, 
we find the Bayes factor 

• Bayes theorem provides a consistent framework for 
choosing between different models

E=P(D|M)=⌠⌡P(D|θ,M)P(θ|M)dθ

P(M1|D)

P(M2|D)
=

P(D|M1)P(M1)

P(D|M2)P(M2)

Model prior

likelihoodevidence

evidence

prior

Model posterior



Occam’s Razor

• Occam factor rewards the 
model with the least 
amount of wasted 
parameter space (“most 
predictive”)

Best fit likelihood
Occam factor

E =

Z
d✓P (D|✓,M)P (✓|M)

⇡ P (D|✓̂,M)⇥ �✓

�✓



Bayesian Model 
Comparison

• Jeffrey’s (1961) scale:      

• If model priors are equal, evidence ratio and 
Bayes factor are the same

Difference Jeffrey 
(1961)

Trotta 
(2006)

Odds
Δln(E)<1 No evidence No 

evidence
3:1

1<Δln(E)<2.5 substantial weak 12:1
2.5<Δln(E)<5 strong moderate 150:1

Δln(E)>5 decisive strong >150:
1



Information Criteria
• Instead of using the Evidence (which is difficult to 

calculate accurately) we can approximate it using an 
Information Criteria statistic 

• Ability to fit the data (chi-squared) penalised by (lack of) 
predictivity 

• Smaller the value of the IC, the better the model 
• Bayesian Information Criterion 

• k is the number of free parameters and N is the number of data points 

• Deviance Information Criterion (Spielgelhalter et al. 2002) 

• Here c is the complexity, which is equal to number of well measured parameters

BIC = �2(✓̂) + k lnN

DIC = �2(✓̂) + 2c



Complexity
• The DIC penalises models based 

on the Bayesian complexity, the 
number of well-measured 
parameters 

• This can be computed through 
the information gain (KL 
divergence) between the prior 
and posterior, minus a point 
estimate 

• For the simple gaussian 
likelihood, this is given by 

• Average is over posterior

Cb = �2
⇣
DKL [P (✓|D,M)P (✓|M)]� dDKL

⌘

Cb = �2(✓)� �2(✓̄)



Tensions
• Tensions occur when 

two datasets have 
different preferred 
values (posterior 
distributions) for some 
common parameters 

• This can arise due to 

• random chance 

• systematic errors 

• undiscovered physics
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Diagnostic statistics
• Need to diagnose not if the model is 

correct, but if the tension is significant 

• Simple test 𝜒2 per degree of freedom 
• Equivalent to p-value test on data 

• Only a point estimate though 

• Raveri (2015): the evidence ratio 

• Joudaki et al (2016): change in DIC
C(D1, D2,M) =

P (D1 [D2|M)

P (D1|M)P (D2|M)

�DIC = DIC(D1 [D2)�DIC(D1)�DIC(D2)



Linear evidence

• Evidence in linear case dependent on  
1.likelihood normalisation 
2.Occam factor (compression of prior into posterior) 
3.Displacement between prior and posterior 

•In linear case, final Fisher information matrix is sum of prior and 
likelihood (F=L+Π) 
•If prior is wide, Π is small (so displacement minimised), but 
Occam factor larger

1

2 3
P (D|M) = L0

|F |�1/2

|⇧|�1/2
exp


�1

2

(✓TLL✓L + ✓T⇡⇧✓⇡ � ¯✓TF ¯✓)

�



Simple linear model

Image credit: Tamara Davis



Diagnostics II: The 
Surprise

• Seehars et al (2016): the ‘Surprise’ statistic, based on cross 
entropy of two distributions 

• Cross entropy given by KL divergence between original (D1) 
and updated dataset (D2) 

• Surprise is difference of observed KL divergence relative to 
expected 
• where expected assumes consistency 

• One data set is assumed to be ‘ground-truth’, and information 
gain is considered in light on updating, or additional  

S ⌘ DKL (P (✓|D2)||P (✓|D1))� hDi

DKL (P (✓|D2)||P (✓|D1)) =

Z
P (✓|D2) log


P (✓|D2)

P (✓|D1)

�



Linear tension

• Displacement terms equivalent to `Surprise’ - 
relative entropy between two distributions 

• Occam factor independent of tensions 
• Tensions manifest in first and third terms - 

best fit likelihood and displacement

P (D1+2|M)

P (D1|M)P (D2|M)
=

L1+2
0

L1
0L2

0

⇥ |F1+2|�1/2

|F1|�1/2|F2|�1/2
⇥ displacement terms



Linear DIC
• ΔDIC statistic has two components 

• Difference in mean parameter (best fit) likelihood  

• Difference in penalty term (complexity) 

• In linear case, final Fisher matrix is the sum of 
individual matrices, so complexity doesn’t change 
• Tension statistic (in linear case) driven entirely by 

difference in best likelihood 

��2 = �2
1+2 � �2

1 � �2
2

�Cb = Cb1+2 � Cb1 � Cb2



Linear Surprise
• Surprise is difference between information gain (going from data set D1 

to D2)  and expected information gain 
• In the linear case, KL divergence can be 

• For the expectation of the information gain, need to average over 
possible outcomes for the combined data set 
• But in the linear case, this corresponds to the maximum likelihood, 

where the information gain is evaluated at the posterior maximum 
•   

• This is not the same as the complexity change, even though it looks 
similar, as the averaging process happens over the final posterior, not 
individual ones

DKL = �1

2

h
�2
1+2(✓)� �2

1(✓)
i

hDi = �1

2

⇥
�2
1+2(✓̄)� �2

1(✓̄)
⇤

S = DKL � hDi = 1

2

h
�2
1+2(✓̄)� �2

1(✓̄)� (�2
1+2(✓)� �2

1(✓))
i



Pros and Cons
Approach Like ratio Evidence DIC Surprise

Average over 
parameters No Yes Yes Yes

From MCMC 
chain Yes No Yes Yes

Probabalistic Yes Yes Yes No

Symmetric Yes Yes Yes No



DIC
• Simple 5th order polynomial 

model, with second data set 
offset from the first 

• Complexity of each individual 
data, and also combined data, 
is the same 

• Both measure the 5 free 
parameters well 

• DIC only changes due to 
worsening of 𝜒2 

• The ΔDIC goes from negative 
(agreement) to positive 
(tension) as the offset increases 

• Odds ratio of agreement
I(D1, D2) ⌘ exp{��DIC(D1, D2)/2}



KiDS vs Planck
• All tensions 

considered here are in 
light of a particular 
model 

• If the model is 
changed, the tension 
may be alleviated 

• This is not the same 
as model selection



Application to lensing 
data

• In Joudaki et al 
(2016) they 
compared the 
cosmological 
constraints from 
Planck CMB data 
with KiDS-450 
weak lensing data 

• Including curvature 
worsened tension, 
but allowing for 
dynamical dark 
energy improved 
agreement

Model T(S8) ΔDIC

ΛCDM

— fiducial systematics 2.1σ 1.26 Small tension

— extended systematics 1.8σ 1.4 Small tension

 — large scales 1.9σ 1.24 Small tension

Neutrino mass 2.4σ 0.022 Marginal case

Curvature 3.5σ 3.4 Large tension

Dark Energy (constant w) 0.89σ -1.98 Agreement

Curvature + dark energy 2.1σ -1.18 Agreement



Curvature
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Summary
• We can estimate the relative probability of tensions 

between data sets using ratios of model likelihood 
(evidence) 

• The Deviance Information Criteria is a simple 
method, symmetric to evaluate tensions, being 
sensitive to likelihood ratio, but calibrated against 
parameter confidence regions 

• Comparing tension between CMB and weak lensing 
tomography, we find these data sets give better 
agreement when dynamical dark energy is included 
in the model


