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The Dawn of Gravitational-wave Astronomy

GW150914 at Hanford & Livingston Observatories
(plot credit: N. Cornish, J. Kanner, T. Littenberg, M. Millhouse;
LVC, Phys Rev Lett 116 (2016) 061102)
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The Dawn of Gravitational-Wave Astronomy

Panorama at LIGO Hanford Observatory (credit: G.D. Meadors)

3 / 41



Opening the spectrum

Space for new observatories (credit: NASA Goddard Space Flight Center) 4 / 41



Introduction to Gravitational Waves

General relativity (GR): extremize curvature R ,
when cosmological constant Λ, matter LM , metric g :

0 = δ

∫ (
1
8π

(R − 2Λ) + LM
)√
−|g |d4x ,
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Introduction to Gravitational Waves

General relativity (GR): extremize curvature R ,
when cosmological constant Λ, matter LM , metric g :

0 = δ

∫ (
1
8π

(R − 2Λ) + LM
)√
−|g |d4x ,

GR’s contribution: Einstein-Hilbert action S ,

S ∝
∫

R
√
−|g |d4x ,

GR says, ‘minimize/maximize Ricci curvature R ‘ 1 ,
(as much as matter allows)

1Maybe someday this will turn out to be f (R)?
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Introduction to Gravitational Waves

General relativity (GR): extremize curvature R ,
when cosmological constant Λ, matter LM , metric g :

0 = δ

∫ (
1
8π

(R − 2Λ) + LM
)√
−|g |d4x ,

gives the Einstein field equations2 for stress-energy tensor T :

Rµν −
1
2
gµν(R + 2Λ) = 8πTµν ,

2where R and Rµν depend on gµν
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Introduction to Gravitational Waves

General relativity (GR): extremize curvature R ,
when cosmological constant Λ, matter LM , metric g :

0 = δ

∫ (
1
8π

(R − 2Λ) + LM
)√
−|g |d4x ,

→ wave equation in transverse-traceless gauge if gµν ≈ ηµν + hµν ,
for flat space η and a small wave h:

(−∂2
t + ∂2

z )hµν = 16πTµν .
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All conceivable wave polarizations
22
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Figure 2.2:
Six GW polarizations are permitted by metric theories of gravity [178]. Here, all are
shown propogating in the z-direction (note different axes along left column: the wave
travels into the plane of the page for the top three, along the plane of the page for the
bottom three). GR permits the top two, (a) and (b); scalar-tensor-vector theory permits
also (c); the last three are found in other theories [179]. Conventionally, (a) is labelled
h+ and (b) is h×. Shown is the metric perturbation; physically, this corresponds to
measured relative motion of test particles. A complete wave cycle is depicted. Off-page
(not shown) third- and time-axis are not perturbed. For illustration, the figure shows
strain ampitude h = 0.25, large enough that the linearized GR model would become
inaccurate. This strain is over 20 orders of magnitude larger than the strains LIGO
typically expects; LIGO is designed with GR and h+ and h× polarizations in mind.

GR allows (a) and (b)
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Introduction to Gravitational Waves

Wave equation is sourced by T :
Conservation of mass-energy → no monopole radiation
Conservation of momentum → no dipole (unlike light)
Quadrupoles (& higher) needed: massive astrophysical bodies

Direction wave-vector kµ,
2 polarizations (h+ & h×) of strain h:

hµν =


0 0 0 0
0 −h+ h× 0
0 h× h+ 0
0 0 0 0

<(e i(kµxµ+φ0)
)
.

Space ‘stretches’ length L by ∆L in one direction, then another:
∆L = hL→ measure ∆L
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Gravitational-wave Observatories

Global map out-of-date: Virgo now fully-operational,
LIGO India under construction (image credit: LIGO EPO)
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Gravitational-wave Observatories

LIGO location and configuration (credit: S. Larson, Northwestern U) 12 / 41



Gravitational-wave Observatories

Overhead, toward X-arm (credit: C. Gray, LIGO Hanford)
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Gravitational-wave Data Analysis

transient events long-lasting

predicted form CBCs3 CWs4

unknown form bursts stochastic

CBCs ‘Inspirals’ of merging neutron stars & black holes
CWs ‘Pulsars’ with mountains on neutron (quark?) crust

Bursts from supernovae, hypernovae (GRBs)...
Stochastic background of the Big Bang, white dwarf stars...

3Compact Binary Coalescences
4Continuous Waves
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GW150914: an archetypical compact binary coalescence
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Inspiral Merger Ring-
down

Numerical relativity

Reconstructed (template)

Numerical relativity (NR) & template (‘Observation of gravitational waves
from a binary black-hole merger’, LVC, Phys Rev Lett 116 (2016) 061102)
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What does the template reveal?

Inference
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What does the template reveal?

Inference
Inference: learning about the model from the data
(By estimating parameters)
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Inference, concrete example: GW150914 localization

Astronomical landmarks at time of event (probability deciles)
(credit: R. Williams, Caltech; T. Boch, CDS Strasbourg;
S. Larson, Northwestern U)
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Inference, abstract example: GW150914 and stellar winds

Weak wind

Strong wind

Figure 1, ‘Astrophysical implications of the binary black-hole merger
GW150914’ (LVC, ApJL 818 (2016) L22), after Belcynzski et al 2010.
Black-hole progenitor masses favor weak metallicity-wind models
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Intro to Bayesian inference

Bayes’ theorem is natural for inference
What is the ‘posterior’ probability of A, given B? P(A|B) is,

P(A|B) =
P(B|A)P(A)

P(B)
,

Ask, what’s probability of a parameter λ given GW strain h(t)?

P(λ|h(t)) =
P(h(t)|λ)P(λ)

P(h(t))
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Intro to Bayesian inference

In the equation,

P(λ|h(t)) =
P(h(t)|λ)P(λ)

P(h(t))

P(h(t)|λ) is the likelihood :
many people use likelihoods
(can be numerically-hard, depends on noise distribution)
P(λ) is the prior:
the philosophical difference!
P(h(t)) is the probability of the data (a normalization):
usually hard to estimate
get around by comparing P(λA|h(t))

P(λB |h(t))
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Intro to Bayesian inference

Example

λ could be a vector ~λ
λ1 = tc , ‘when did the black holes coalesce?’ or,
λ2 = δ, ‘at what declination did they come from?’
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More advanced Bayesian inference: prior

(iv) The inclination angle ι, between the system’s orbital
angular momentum and the line of sight. For aligned
and nonspinning systems this coincides with the
angle θJN between the total angular momentum and
the line of sight (see below). We will use the more
general θJN throughout the text.

(v) The polarization angle ψ which describes the ori-
entation of the projection of the binary’s orbital
momentum vector onto the plane on the sky, as
defined in [46].

(vi) An arbitrary reference time tc, e.g. the time of
coalescence of the binary.

(vii) The orbital phase ϕc of the binary at the reference
time tc.

Nine parameters are necessary to describe a circular binary
consisting of point-mass objects with no spins. If spins of
the binary’s components are included in the model, they are
described by six additional parameters, for a total of 15:

(i) dimensionless spin magnitudes ai, defined as ai ≡
jsij=m 2

i and in the range [0, 1], where si is the spin
vector of the object i, and

(ii) two angles for each si specifying its orientation with
respect to the plane defined by the line of sight and
the initial orbital angular momentum.

In the special case when spin vectors are assumed to be
aligned or antialigned with the orbital angular momentum,
the four spin-orientation angles are fixed, and the spin
magnitudes alone are used, with positive (negative) signs
corresponding to aligned (antialigned) configurations, for a
total of 11 parameters. In the case of precessing waveforms,
the system-frame parametrization has been found to be
more efficient than the radiation frame typically employed
for parameter estimation of precessing binaries. The ori-
entation of the system and its spinning components are
parametrized in a more physically intuitive way that
concisely describes the relevant physics, and defines
evolving quantities at a reference frequency of 100 Hz,
near the peak sensitivity of the detectors [51]:

(i) θJN : The inclination of the system’s total angular
momentum with respect to the line of sight;

(ii) t1; t2: Tilt angles between the compact objects’ spins
and the orbital angular momentum;

(iii) ϕ12: The complimentary azimuthal angle separating
the spin vectors;

(iv) ϕJL: The azimuthal position of the orbital angular
momentum on its cone of precession about the total
angular momentum.

Additional parameters are necessary to fully describe
matter effects in systems involving a neutron star, namely
the equation of state [52], or to model deviations from the
post-Newtonian expansion of the waveforms [e.g. [36,53]],
but we do not consider these here. Finally, additional
parameters could be used to describe waveforms from
eccentric binaries [54] but these have not yet been included
in our models.
GWs emitted over the whole coalescence of two compact

objects produce a characteristic chirp of increasing ampli-
tude and frequency during the adiabatic inspiral phase,
followed by a broadband merger phase and then damped
quasisinusoidal signals during the ringdown phase. The
characteristic time and frequency scales of the whole
inspiral merger ringdown are important in choosing the
appropriate length of the data segment to analyze and
the bandwidth necessary to capture the whole radiation. At
the leading Newtonian quadrupole order, the time to
coalescence of a binary emitting GWs at frequency f is [48]

τ¼ 93.9
!

f
30 Hz

"−8=3! M
0.87M⊙

"−5=3
sec : ð16Þ

Here we have normalized the quantities to an m 1 ¼ m 2 ¼
1M⊙ equal mass binary. The frequency of dominant mode
gravitational-wave emission at the innermost stable circular
orbit for a binary with nonspinning components is [48]

fisco ¼
1

63=2πðm 1 þ m 2Þ
¼ 4.4

!
M⊙

m 1 þ m 2

"
kHz: ð17 Þ

The low-frequency cutoff of the instrument, which sets
the duration of the signal, was 40 Hz for LIGO in initial/

FIG. 1. Prior probability pðm 1; m 2jH SÞ, uniform in component
masses within the bounds shown (left), and with the same
distribution transformed into the M, q parametrization used
for sampling.

J. VEITCH et al. PHYSICAL REVIEW D 91, 042003 (2015)

042003-6

Figure 1, ‘Parameter estimation for compact binaries...’ (Veitch et al, PRD
91 (2015) 042003). Example prior on λ: black hole masses m1, m2 and
mass ratio q & chirp massM
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More advanced Bayesian inference: posterior

In all three cases, the three independent sampling algo-
rithms converge on the same posterior distributions, indicat-
ing that the algorithms can reliably determine the source
parameters, even for the full 15-dimensional spinning case.
We also computed the evidence for each signal, relative

to the Gaussian noise hypothesis, using each sampler, with
errors computed as in Sec. VA. The results in Table I show

that the two flavors of nested sampling produce more
precise estimates, according to their own statistical error
estimates, but they disagree in the mean value. The
thermodynamic integration method used with the
MCMC algorithm (with 16 steps on the temperature ladder)
produces a larger statistical error estimate, which generally
encloses both the nested sampling and BAMBI estimates.

FIG. 9 (color online). Comparison of probability density functions for the BBH signal (Table II), with the same color scheme as Fig. 7 .
(First row left) The mass posterior distribution parametrized by chirp mass and symmetric mass ratio. (First row center) The location of
the source on the sky. (First row right) The distance dL and inclination θJN of the source showing the degeneracy is broken, as in the
NSBH case. (Second row left) The spins magnitude posterior distribution. (Second row center) The spin and mass of the most massive
member of the binary illustrating the degeneracy between mass and spin. (Second row right) The spin and symmetric mass ratio. (Third
row left) The spins tilt posterior distribution. (Third row center) The spin tilt of the more massive member of the binary and the
symmetric mass ratio. (Third row right) The spin tilt and mass of the most massive member of the binary.

J. VEITCH et al. PHYSICAL REVIEW D 91, 042003 (2015)

042003-20

Figure 9, ‘Parameter estimation for compact binaries...’ (Veitch et al, PRD
91 (2015) 042003). Example posterior (three computational methods:
BAMBI/Nest/MCMC) on right ascension α and declination δ.
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More advanced Bayesian inference: hypotheses
A special ‘parameter’: a hypothesis H,

P(~λ|h(t),H) =
P(h(t)|~λ,H)P(~λ|H)

P(h(t)|H)

The Bayesian evidence Z for H: integrate! (good sampling is hard)

Z = p(h(t)|H) =

∫
d~λP(h(t)|~λ,H)p(~λ|H)

Between two hypothesis, Bayes Factor Bij tells
how much data supports i over j :

Bij =
Zi

Zj
,

with final Odds Oij

(ratio of posterior probabilities),

Oij =
P(Hi )

P(Hj)
Bij
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Understanding merging binaries

Compact binary coalescence (CBC):
neutron stars
(GW170817)
black holes
(GW150914, LVT151012, GW151226, GW170104, GW170608,
GW170814,. . . )
black hole coalescences: theoretically simple, numerically hairy
Model | Numerical Relativity (NR) ∝ General Relativity (GR):

[h(t)]measured = calibration(photodiode(interferometer(t))),

[h(t)]modelled = approximant(NR(GR(t)))

=⇒ What is the strain h(t)?5

5implicit: what is h(t, λ)
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Parameters λ of a CBC determine h(t) 7

x̂

ŷ

m2

m1

Ĵ ⌘ ẑ

~L

↵0

◆

✓J

N̂

�1

�2

�p

FIG. 1: The J-aligned source frame of a precessing binary.
IMRPhenomPv2 uses a single precessing spin approximation
to describe the inspiral, merger and ringdown and is described

by the parameter vector ~� = (m1, m2,�1,�2,�p, ✓J ,↵0), with

N̂ in the xz-plane. Here, �1 and �2 are the spin components
that lie parallel to ~L on the heavier (�1) and lighter (�2) com-
pact object; and the perpendicular spin parameter �p is the
spin component that lies in the orbital plane and is associated
with the heavier body m1.

the angle between L̂ and Ĵ is small. We therefore do not
expect that IMRPhenomPv2 accurately models precess-
ing cases where J ⇠ 0. Such cases, observed for highly
anti-aligned spins with moderate mass ratios and only a
small value of �p, are known as transitional precession as

Ĵ undergoes a “flip” and completely changes its orienta-
tion [28]. We also do not expect waveforms of systems
with higher mass ratios and large values of �p to be mod-
eled accurately by IMRPhenomPv2 as the angle between
L and J can be large for such cases. However, for some
of these cases the model may still produce acceptable
results, but detailed checks across the parameter space
have not yet been performed.

III. STRATEGIES FOR BUILDING HIGH
DIMENSIONAL GW ROMS

Previous work [10, 12–16, 23] on constructing reduced
bases of waveform models have considered waveforms de-
scribed by only a few intrinsic parameters or short sig-
nals. The IMRPhenomPv2 waveform family is described
by seven parameters and the waveform morphologies are
inherently more complex than in the non-precessing case.
The increase in the size of the parameter space, to-
gether with the greater variety of waveform morpholo-
gies, means that constructing a faithful training space is
more di�cult than in previous work.

Another concern has to do with the fact that we would
like the ROQ to be useful for a very large range of as-
trophysically relevant parameters; from binary neutron
stars with a total mass of around 2 M� to binary black
holes with total masses of several tens of solar masses.
The signals associated with these di↵erent ends of the
mass spectrum have very di↵erent in-band durations.

In this section we describe our strategy for dealing with
these issues as they relate to populating a faithful train-
ing set. We also provide a short review of approaches
used in previous work.

A. Mass and frequency partitions

We would like our ROQ to be valid for BNS, NSBH
and BBH systems with as few basis elements as possi-
ble. In addition, we want to be able to exploit the lowest
sensitive frequency of the detectors. To ensure these con-
ditions are met, we find it useful to partition the mass-
space into (overlapping) regions in chirp mass. These
overlapping regions are defined by

M(T = 2n+1s)  M  1.2 M(T = 2ns) , (15)

where T is the waveform duration [8] from 20Hz, M =
(m1m2)

3/5/(m1 + m2)
1/5 is the chirp mass, which spec-

ifies the waveform duration to leading order, and q =
m1/m2 � 1 is the mass ratio chosen between 1 and 9.
To interpret M as a function of time (and vice versa)
we build an interpolant of M(T ) using the LAL func-
tion SimIMRSEOBNRv2ChirpTimeSingleSpin. We com-
pute the signal duration for a given chirp mass, fixing
the spins to be maximally prograde and mass ratio to
be 9, which produces the longest inspirals [38]. We con-
sider the following powers of 2; n = 2, 3, . . . , 6, corre-
sponding to regions in M-space describing signals with
durations; 1.5s  T  4s; 3s  T  8s; 6s  T  16s;
12s  T  32s; 23.8s  T  64s; 47.5s  T  128s.
The union of the overlapping regions in chirp mass
capture binary systems with signal-durations between
slightly less than 2s up to 128s starting from 20Hz. The
upper frequencies for the cases in Table I correspond
to the maximum-over-configuration ringdown frequency,
rounded the next-highest-power-of-two.

Our particular choices have been guided by the expec-
tation that, typically, a stochastic sampler will stay con-
fined to a given partition or two. Future improvements
to the ROQ method presented here, and more generally
ROM building, may find di↵erent partition strategies to
work better. Notice that the finer we make our mass par-
tition the fewer basis will be needed in each partition and
hence yields greater ROQ compression. Finer mass parti-
tions also reduce the o✏ine cost associated with building
the basis in a given partition. On the other hand, if we
add up all the basis from all the partitions we should ex-
pect to find this total to be larger than a corresponding
basis resulting from one large partition of equivalent ex-

Figure 1, ‘Fast and Accurate Inference...’ (Smith et al, PRD 94 (2016)
044031). Illustration of CBC parameters in a J-aligned source frame, with
precession.
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Parameter estimation for compact binary coalescences

(for the simplest, non-eccentric binary black hole (BBH) case)
Strain h(t) depends on 15 binary parameters λ

+2: masses {m1,m2},
+6: 3-D spin-vectors {S1,S2},
+3: sky location of frame in BBH frame (r , ι, ψ),
+1: coalescence time tc ,
+2: sky location of BBH in detector frame (θ, ϕ),
+1: polarization angle ψp∑

= 15 parameters to estimate

GR non-linear → simulate BBH with NR
Too high-dimensional to simulate all with NR → approximants
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Numerical relativity’s approximant waveforms

LALInference (Veitch et al 2015)
– Bayesian evidence for parameter estimation w/. . .
families of approximants to NR

SEOBNR
(Spinning Effective One Body-Numerical Relativity)

IMRPhenom
(Inspiral-Merger-Ringdown Phenomenological Model)

(and others)

– many motivations, known to differ: what is best?
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Inferring evidence for approximants in data

Differences in NR (Williamson et al 2017; Pang et al 2018)
=⇒ What about data?
Two phases of questions ‖

1 What is the typical difference?
2 Where is it biggest in parameter space?
3 Which fits better?
4 How much data is needed distinguish these approximants?

e.g., how many events?

5 Can data tune better approximant models?
6 “” tune NR?

‖CONCERNS: spin effects (not) included, higher-order modes, etc. . .
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How model-comparison uses Bayes Factors

mergers), we can rule out the entire population forming
from one of the two channels after 10–40 GW150914-like
events. When there is a large contribution from the aligned
model, we observe that the allowed region for σ1 becomes
small faster than the allowed region for σ2. There are two
effects, which explain this. First, the secondary black hole’s
spin has a less significant effect on the waveform [51–53].
The spin orientation of the secondary is therefore less well
constrained for each event. This translates to a larger
uncertainty for σ2 compared to σ1. Second, the width of
the distribution of spin tilts is broader for the secondary

black holes. This broader distribution is intrinsically more
difficult to resolve.

VI. SPIN MAPS

In addition to our hierarchical analysis, we present a
visualization tool for the distribution of spin orientations. We
introduce “spin maps”: histograms of posterior spin orien-
tation probability density, averaged over many events, and
plotted using a Mollweide projection of the sphere defining
the spin orientation, see Fig. 5. The maps use HEALPIX [54].

FIG. 4. Log Bayes factors as a function of the number of GW150914-like events. The dot-dashed red line shows Bfield
dyn comparing the

pure-field hypothesis to the pure-dynamical hypothesis. The dashed green line shows Bmix
dyn comparing the two-population hypothesis to

the dynamical hypothesis. The solid blue line shows Bmix
field comparing the two-population hypothesis to the pure-field hypothesis. The

dashed black line denotes j lnðBÞj ¼ 8, our threshold for distinguishing between models. Each panel is a different universe. The top
panel is universe C (equal mixture of field and dynamic). With≲ 40 events, there is a strong preference for the two-component
hypothesis over the pure-dynamic hypothesis. After ∼50 events there is a preference for the two-component hypothesis over the pure-
field hypothesis. The center panel is universe D (majority field with some dynamic). With≲ 10 events, there is a strong preference for
the two-component and pure-field hypotheses over the pure-dynamic hypothesis. There is a preference for the correct two-population
hypothesis over the pure-field hypothesis. The bottom panel is universe E (pure field). With≲ 10 events, there is a strong preference for
the two-component and field hypotheses over the dynamic hypothesis. There is a marginal preference for the correct field hypothesis
over the two-population hypothesis.

DETERMINING THE POPULATION PROPERTIES OF … PHYSICAL REVIEW D 96, 023012 (2017)

023012-7

Figure 1, ‘Determining the population properties...’ (Tablot & Thrane,
PRD 96 (2017) 023012). Using Bayes Factors B to distinguish popula-
tion models: individual event evidence small, but cumulative grows, allows
model comparison
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Introduction to spin-precession

So far, talked about SEOBNR vs IMRPhenom
→ Hone in on the difference between IMRPhenomD & IMRPhenomP:

Mass ratio (above unity) : q = m2/m1, (1)
Total mass : M = m1 + m2 (2)

Effective spin parameters

χeff = (S1/m1 + S2/m2) · L̂/M (3)

=
a1 cos θ1 + qa2 cos θ2

1 + q

χp = max

(
a1 sin θ1,

(
4q + 3
4 + 3q

)
qa2 sin θ2

)
. (4)
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Can we measure precession?

Simulations (no real data)
Ask the question:
What is the total Bayes Factor difference
between models with & without precession?
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Histogram of log Bayes Factors D (top) & Pv2 (bottom)
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Histogram of log Bayes Factors in IMRPhenomD
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log Bayes Factor (Pv2 - D) vs log Bayes Factor (P)
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difference in log Bayes factors: ratioBFvsSetTwoBF
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Histogram of log Bayes Factor (Pv2 - D)
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Measurability

Suppose detection = threshold
total log Bayes Factor difference between D and Pv2 ≥ 8?
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25 non-independent Shuffles to Reach logBF = 8
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Histogram: 103 non-independent Shuffles to Threshold
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Pre-Conclusion

Plan:
1 As few as one event, but typically O(8) assuming amax = 0.89

where a is black hole spin
2 If amax lower, probably harder
3 Hyper-parametrize as in model at RIT
4 Discern which events best indicate precession

Why care?
Precession =⇒ GR test + astro (capture/common)
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Conclusion

Gravitational-wave astronomy is beginning
Bayesian Inference tests hypotheses on this new data
Growing evidence w/ more events – and new types of observatories
Acknowledgments
Thanks again to my OzGrav colleagues, including H. Middleton for
inviting this talk, as well as L. Sun and A. Melatos, and to my
collaborators in the Monash Centre for Astrophysics (MoCA).
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