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2. Gravitational Wave Detectors



3. Detector Locations



4. Gravitational Wave Sources



5. Current Black Hole Detections

6 Binary black hole
signals detected so far.

Estimated distances
between 340 and 1000
Mpc.

One signal detected by
three detectors.

Image from first detection
paper GW150914 (Phys-
RevLett.116.061102)



6. The Neutron Star Detection GW170817

Source masses 1.36− 2.26M� and 0.86− 1.36M�

Distance 40 Mpc



7. Parameter Estimation

Measuring parameters of a
source is essential for
astrophysics with
gravitational wave
detections.

With GW detectors we can
measure the chirp mass,
spin, eccentricity, distance,
and sky position.

Chirp mass is given by M =
(m1m2)3/5/(m1 + m2)1/5



8. Astrophysics with Source Parameters

Constrain the mass distribution of
black hole binaries.

Distinguish between different
black hole formation channels.

Attempt to constrain parameters
in binary evolution using
population synthesis models.

Measure the evolution of merger
rate / mass distribution with
redshift.



9. Bayesian Model Selection



10. Parameter Estimation

To calculate the evidence for each model we integrate the
likelihood multiplied by the prior over all possible parameter
values θ

p(D|M) =

∫
θ
p(θ|M)p(D|θ,M)dθ. (1)

The evidence integral is difficult for a large number of
parameters.

This problem is solved using nested sampling.



11. Nested Sampling
First the likelihood is calculated for selected points distributed over the
entire prior.

The point with the smallest likelihood and largest prior mass is selected
and becomes the limiting values.

A new point is generated inside the new limits.

This is repeated so that it iterates inwards in prior mass and upwards in
likelihood until the highest value is found.

Produces Bayes factors and posterior distributions on the signal
parameters.



12. Burst Sources

For a burst source we don’t know exactly what a signal should
look like.

We use sine Gaussian’s as a signal model.

They are defined as,

hx(t) = h0 sin(2πft) exp(−t2/τ2) (2)

h+(t) = h0 cos(2πft) exp(−t2/τ2) (3)

where τ = Q/
√

2πf , f is the frequency, Q is the quality
factor, t is time of the signal and h0 = hrss/

√
τ , where hrss is

the root sum squared amplitude of the signal.

Produces posterior distributions on hrss, Q, f, and sky
position.



13. Glitches

Glitches are short duration
excess power noise created by
the detector or the
environment.

The detectors have 1000’s of
auxiliary channels of data from
monitors around the detector.

Some glitches don’t show up in
any monitors making it difficult
to determine their origin.

They limit the sensitivity of
gravitational wave searches.



14. Signals with glitches

106 glitches above SNR 6
were observed in 51.5
days of O1.

GW170817 had a large
glitch in L1.

High probability that as
detections increase, more
will occur at the same
time as a glitch.



15. Glitch Removal

For GW170817 we already know what
we expected the signal to look like.

The glitch was very loud and easy to
identify as being a glitch.

It was removed by gating and
subtracting the reconstructed
waveform.

The glitch is short duration compared
to the signal, which means some
signal is still left over after gating.

It might not be so easy next time!



16. This Analysis

We inject three different types of gravitational wave signals on
top of three different types of glitches.

We measure the parameters of the signals at different signal
to noise ratios and offsets in time between the signal and
glitches.

What happens if the glitch is not obvious because it does not
occur in auxiliary channels and the exact shape of the signal
waveform is unknown?

We determine the effects of glitches that can’t be gated.

We investigate if the effects of glitches is worse when there is
a mis-match between signal and template.



17. The Glitches

Three types of O1 glitches are used that occur in L1 at the same
time as good quality H1 data.

Figure: Images taken from Gravity Spy.



18. The Signals

We measure parameters of all signals
injected near glitches with time offsets
of 0.0 s, 0.1 s and 0.2 s.

IMRPhenomPv2 signal model is used
for the CBC signals.

A sine Gaussian signal model is used
for the sine Gaussian signals.

A sine Gaussian model is used for the
supernova signals to determine if
effects are worse when there is a
mis-match between signal and model.
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19. BBH Bayes Factors
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20. BBH Example Posteriors
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21. BBH Chirp Mass Summary
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22. BBH Distance Summary
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23. Sine Gaussian Bayes Factors
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24. Sine Gaussian Example Posteriors
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25. Sine Gaussian Frequency Summary
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26. Sine Gaussian Log Hrss Summary
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27. Supernova Bayes Factors
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28. Supernova Example Posteriors
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29. Supernova Duration Summary
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30. Supernova Log Hrss Summary

4 2 0 2 4
loghrssrec loghrsstrue

0

1

2

3

4

5

Po
st

er
io

r w
id

th
 

offset 0.0s

scattering
blip
whistle

4 2 0 2 4
loghrssrec loghrsstrue

0

1

2

3

4

5

Po
st

er
io

r w
id

th
 

offset 0.1s

scattering
blip
whistle

4 2 0 2 4
loghrssrec loghrsstrue

0

1

2

3

4

5

Po
st

er
io

r w
id

th
 

offset 0.2s

scattering
blip
whistle



31. What’s next?

Next step is to apply techniques designed to reduce the effect
of glitches to the data set.

We are attempting to reconstruct the glitch and the signal at
the same time to reduce the error on signal parameters.

Currently Bayes factors can be produced to tell you if their is
a signal or a glitch in the data.

Next we hope to produce a Bayes factor that tells you there is
both a signal and a glitch.


