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GAMMA-RAY BURSTS

» GRB170817A was peculiar...

1036
1033
1054
1033
1052
1051
1039

1 049

Eiso (1 keV - 10 MeV) (erg)

1048
@ Long GRBs

© Short GRBs
+ GRB 170817A

1 047

104 |

. . e : :
Redshift (2)

Abbott et al. 2017 (GRB+GW paper)

» Close and dim... why!?



GAMMA-RAY BURSTS

» General theory for afterglows.
» Assume observer is located at angle within the jet opening angle 6.
» Relativistic beaming effects mean the observer only sees emission from 1/I" cone.

» As the jet slows down and 1/1" becomes comparable to 0; you "notice” the missing
energy, change in slope; this is the “jet break” in a simple picture.
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GAMMA-RAY BURSTS

» What if you were off-axis to begin with?
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» Now relativistic beaming is working in your favour, the

light curve rises and peaks when 1/I" cone covers the
observers line of sight.



GAMMA-RAY BURSTS

» The afterglow of GRB170817A

» We now believe through various arguments that GRB170817 resulted in a structured

jet,and 8, ~ 23° . The light curve peaked around a 100 days post merger.
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Ryan et al. 2019

Looks a lot like the
off-axis afterglows
shown previously...



GAMMA-RAY BURSTS

» GRB170817A was on

the cusp of being
undetectable as a GRB.

» GRB170817A was only
detectable because it
was so close! There
must be systems where
we were too far away or
too far off-axis...
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GAMMA-RAY BURSTS

» GRB170817A was on

the cusp of being
undetectable as a GRB.

» GRB170817A was only
detectable because it
was so close! There
must be systems where
we were too far away or
too far off-axis...

» We think we found a
candidate...

Maximum viewing angle [deg]
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Modified from Howell et al. 2019



GAMMA-RAY BURSTS

» We analyse CDF-S XT1with off-axis afterglow models.

» Structured jet model similar in profile to GRB170817A fits the data!

Sarin et al. in prep. Data from Bauer et al. 17
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GAMMA-RAY BURSTS 10
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Sarin et al. in prep.
» We infer CDF-S XT1 to be the X-ray afterglow of a structured jet with 8, . ~ 36°.
» This is the first orphan afterglow ever detected in X-rays!

» We think this may be the afterglow of a short gamma-ray burst so perhaps CDF-
XT1 is a neutron star merger at a redshift 7 ~ 2.23!



GW170817
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» The first binary neutron
star merger observed in
gravitational waves and
in electromagnetic
radiation!

» But what remained
behind after the merger?

» Despite the wealth of
observations, the fate of
the remnant is still

uncertain.. See e.g. Ai et
al. 2019
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AN OVERVIEW OF NEUTRON STAR MERGERS 12

Credit: Carl Knox

Sarin and Lasky (in prep.)



OBSERVATIONAL CONSEQUENCES - GAMMA-RAY BURST
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» One of the very first
consequences of a
neutron star merger is
a gamma-ray burst!

» What does this tell
you about the
remnant?

» Prevailing wisdom -
You need a black hole
to launch a jet...




DO YOU NEED A BLACK HOLE TO LAUNCH A JET?
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» If a jet requires a black
hole central engine then
the existence of gamma-
ray burst immediately
informs the nature of the
remnant.

» Either the remnant was a
short lived neutron star
or it promptly collapsed
into a black hole.

» But do you really need a
black hole to launch a
jet?




DO YOU NEED A BLACK HOLE TO LAUNCH A JET?
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> Alternative viewpoints in
e.g. Mosta et al. 2020 and
Beniamini et al. 2020 for
whether a neutron star can
launch a jet.

» The limitations of current
numerical simulations? See
for e.g., Kiuchi et al. 2015.
Ciolfi 2020.

» Effect of neutrinos?
Magneto-rotational
instabilities?




NEUTRON STAR MERGERS 16

» Mosta et al. 2020 show that a neutron star central engine can indeed produce a
successful short gamma-ray burst!




OBSERVATIONAL CONSEQUENCES - KILONOVAE 17
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> In general, the presence of a neutron star will make the kilonova more “blue’. This is a
consequence of the neutrinos emitted from the neutron star.

» Currently, kilonova models are not robust enough to determine the nature of the remnant
see e.g., contrary views in Yu et al. 2018 and Metzger et al. 2018 for GW170817.

» This is an active area of development and may soon become a viable way of inferring the
nature of the remnant!



LONG-LIVED NEUTRON STARS 18

» For the rest of the talk, | will focus on long-lived neutron stars.
» How do you make a long-lived neutron star?

» Neutron star post-merger remnant born with mass less than the Mgy - will
produce an infinitely stable remnant (H).

» Post-merger remnant born with mass between 1 — 1.2Mqy will collapse into

a black hole at some time 7 (F).




OBSERVATIONAL CONSEQUENCES

- AFTERGLOWS 19

» Gamma-ray bursts often
have an extended x-ray,
optical, radio emission
referred as an afterglow.

» Origin of the X-ray
afterglow is unclear

» External shock from a
relativistic fireball.

» Long-lived neutron
star?

» Both?
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Schematic from Metzger and
Berger (2012)



OBSERVATIONAL CONSEQUENCES - AFTERGLOWS
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OBSERVATIONAL CONSEQUENCES - AFTERGLOWS
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OBSERVATIONAL CONSEQUENCES - AFTERGLOWS 22

Long-lived neutron star
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Sarin et al. (2019)

» Model selection becomes dependent on the equation of state.

» GRB140903A favours the magnetar model for all possible
equation of states.
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» The magnetar model
commonly used in the
literature is missing
critical physics..

» More physical models
out there, such as the

Plerion model (Strang
and Melatos 2019)

» In Sarin et al. (in prep.)
we extend the
magnetar model to
include the effect of
radiative losses at the
jet-ISM shock interface.

At the interface
with the ISM, the
injected energy is
subject to radiative

losses. \

Energy injection
through a
< magnetar wind/
Poynting flux.

Jet-ISM shock (Afterglow)

Modified from Gao et al. (2013)



OBSERVATIONAL CONSEQUENCES - AFTERGLOWS
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» This new model can
naturally explain a
subset of X-ray flares
seen In gamma-ray
burst afterglows

» Furthermore, the new
model is a better fit to
the data than fireball
shock and the
magnetar model
introduced previously!
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o 120521A

» GRB130603B and
GRB140903A X-ray
observations require
systematic model
selection.
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» A smaller subset of
GRBs have more
telltale observations.
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» Collapse of long-lived
neutron star

OtN

» Initially supported against
collapse due to rigid-
body rotation.

» Spin-down and collapse.
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INFERRING COLLAPSE TIME
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» We measure the
collapse-time of 18
putative long-lived
neutron stars from the
X-ray afterglow of 72
short gamma-ray
bursts.

Known redshift

Unknown redshift
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POPULATION PROPERTIES

» Individual events are interesting...

» But exciting secrets are hidden in the population.
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CHOOSING THE RIGHT PRIOR 30
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» We do not measure the mass and initial spin of the
neutron star born in these short gamma-ray bursts.

» For the initial spin, we can use angular momentum
conservation and the breakup frequency to set a
reasonable prior. i.e uniform between 0.5-1ms.

» For the mass...



BINARY NEUTRON STAR MASS DISTRIBUTION
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» Observations of GW190425 suggests the local distribution of
binary neutron stars observed in radio is a poor representation
of the binary neutron star mergers (Abbott et al. 2020)

» Or... GW190425 has progenitors including the lowest mass
black hole ever observed (see Han et al. 2020)

» So what is a reasonable prior for the masses?



BINARY NEUTRON STAR MASS DISTRIBUTION

1 double neutron star — GW170817
1 other 1 — GW190425
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RESULTS

33

We measure Myqy = 2.31790M

-0.21"70

marginalised over all values of €.

If instead, GW190425 is not a
binary neutron star merger. Then

— +0.31
we measure Myqy = 2.2671-M

With future gravitational-wave
observations we will be able to

measure € and get a tighter
constraint on Myqy.

This implies that a significant
fraction of future neutron star
mergers will also produce long-
lived neutron stars!
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» In theory, this method can be used to determine the equation of state.
» In practice, the population is not yet informative...
» Some indications that these post-merger remnants are quark stars, at the one-sigma level.

» This may point towards a temperature dependent phase transition from hadronic to
deconfined quarks!
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2 4 6
braking index, (n)
» Asignificant fraction of these objects spin-down predominantly through

gravitational-wave emission. While the rest also indicate potentially some
spin-down early in their lifetime through gravitational-wave emission.

» This will produce a stochastic gravitational wave background that will be
detectable by third generation telescopes (Cheng et al. 2017).



CONCLUSIONS 36

» We have developed a method to search for orphan afterglows and
find CDF-S XT1 to be an orphan afterglow at a redshift of 2.23.

» Gamma-ray burst afterglow observations point towards a neutron star
central engine for a significant fraction of short gamma-ray bursts.

» Such central engines emit a copious amount of gravitational-waves

which will become detectable with third-generation telescopes (see
Sarin et al. 2018).

» X-ray afterglows of short gamma-ray bursts can be used to indirectly

infer the presence of a long-lived remnant (see Sarin et al. 2019, Sarin
et al. 2020).

» The population properties of neutron star remnants that collapse
indirectly through the X-ray afterglow can constrain the equation of
state and spin-down mechanism (see Sarin et al. 2020).
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