

Adventures in gravitational-wave astronomy: Testing for hair, memory, and eccentricity Paul Lasky

- - Gravitational-wave memory

• Determining gravitational-wave source physics • Black hole formation through eccentricity measurements • Challenges testing of the no-hair theorem

Masses in the Stellar Graveyard

This waveform is just right. I now know the right masses.... (with some posterior probability)

•)(•.

L1 observed H1 observed (shifted, inverted)

The user-friendly Bayesian inference

Ashton, Hübner, PL, Talbot + (2019) Romero-Shaw + (2020)

A versatile parameter-estimation code being used for production science by LIGO/Virgo collaboration

git.ligo.org/lscsoft/bilby/ pip install bilby

•User friendly, open source, modular, easily accessible

•LIGO production science

• Special events (e.g., GW190412, GW190425, GW190814, GW190521, ...) • Catalogues

• Populations

• Tests of GR, equation of state, ...

• Synthetic and real data

• Many examples, user forum, help, etc.

Topics in Gravity

1. Orbital eccentricty and black hole formation 2. Gravitational-wave memory 3. The no-hair theorem

Measuring orbital eccentricity

[aLIGC -AdV]

()

binary stellar evolution

How do LIGO/Virgo black hole binaries form?

dynamical capture

isotropically-distributed spins non-zero orbital eccentricity

Can we distinguish populations by measuring orbital eccentricity?

Measuring orbital eccentricity

GWTC1 (first ten discovered mergers) Romero-Shaw, Lasky, Thrane (2019)

~5% of binaries formed in globular clusters should have non-zero eccentricity (e.g. Samsing, 2018; Rodriguez et al 2018)

"We require ≈ 15 events before it becomes more likely than not to detect eccentricity if all mergers are produced in globular clusters" Romero-Shaw, Lasky, Thrane (2019)

- •Only analysed with quasi-circular templates
- Evidence of precession suggests dynamical formation
- Second-generation merger?

Abbott et al. (2020)

Romero-Shaw, Lasky, Thrane & Calderon Bustillo (2020)

... the data prefer a signal with eccentricity $e \ge 1$ 0.1 at 10 Hz to a nonprecessing, quasi-circular signal, with a log Bayes factor $\ln B = 5.0$ " Words of caution:

• Our waveforms don't go above e = 0.2

•We find precession and eccentricity can be confused in GW190521-like signals

• Waveform models for parameter estimation with eccentricity and precession don't exist (see also Gayathri et al. 2022).

A catalogue of events

Romero-Shaw, Lasky, Thrane (2022; in prep)

A catalogue of events

Branching fraction

Romero-Shaw, Lasky, Thrane (2022; in prep)

•Non-zero from inspiral of point masses • Also from anisotropic distribution of projectiles (gravitons) leaving the source

h X Q

Alternatively, think of gravitational waves providing extra source term

e.g., Braginsky & Thorne (1987), Christodoulou (1991), Thorne (1992)

- mergers (Lasky+2016) •Require ~50 loud events

O3a $\ln BF_{mem} = 0.049$

The No-Hair Theorem

Astrophysical Astrophysical black holes in general relativity completely characterized by three parameters: mass, spin, charge

Overtones – a surprising, partial solution! (Giesler et al, 2019; Isi et al, 2019)

•More than one overtone of fundamental harmonic is enough to test no-hair theorem. i.e. τ_{22n} , f_{22n}

Punchline: post-merger waveform surprisingly well fit by sum of overtones with <u>t22n</u>, <u>f22n</u>

 $(\tau_{lm}, f_{lm}) \rightarrow (\tau_{lmn}, f_{lmn})$

Overtones – a surprising, partial solution! (Giesler et al, 2019; Isi et al, 2019)

GW150914

• Measure first overtone at 3.6σ

• "An independent measurement of the frequency of the first overtone yields agreement with the no-hair hypothesis at the $\sim 20\%$ level."

What about model selection?

Aaah, but we're not done, yet!

Challenges testing the no-hair theorem What about model selection?

- No-hair test \equiv test no hair (Kerr) vs. hairy (non-Kerr) hypothesis
 - $2 + 2 \times N$ parameters (amp/phase of each tone)
 - For loud signals, require large N
 - large Occam penalty
 - "It should give us all pause that this framework seeks to model the remnant of a binary black-hole merger using more physical degrees of freedom than those of the parent binary" Calderon Bustillo, Lasky & Thrane (2021)

Challenges testing the no-hair theorem What about model selection?

No-hair test \equiv test no hair (Kerr) vs. hairy (non-Kerr) hypothesis • Controlled test: inject SNR = 100

> • Bayesian evidence increases with number of overtones, but so does prior volume.

• Prior volume increases faster than evidence → Bayes factor supports fewer overtones Calderon Bustillo, Lasky & Thrane (2021)

Challenges testing SOL Calderon Bustillo.

- Currently ignoring information: we perturbed BHs form from binary me
- Using that constrains parameter spa
- •use waveform models to constrain 1 phases and amplitudes of overtones.

g the no-hair theorem	
ution , Lasky & Thrane (2021)	
	C W 15001 I
	UWIJU914
e kno	$\ln BF = 6.5$ for Kerr vs. non-Ker
erger	disfavored with <1 : 600 with resp
ace v	to the Kerr black-hole one."
possible	

Paul Lasky

- Formation mechanism of binaries: dynamical channel looking relevant
- •Memory: detectable in a few years
- Testing no-hair: we finally (think we) understand this

Lot's of interesting science to be done!

Gravitational-wave astronomy is in its infancy

"Bayesian parameter estimation is the future of gravitational-wave astronomy"

Matilda B. Bilby*

*not a real quote (also not a her real name)

Algorithm for detecting and distinguishing orphan memory and cosmic strings

McNeill, Thrane & Lasky (2017); Divakarla, Thrane, Lasky & Whiting (2020)

