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GW Amplitude

GW amplitude is measured in

arrows divided by radius of ring
(from previous slide)



Advanced LIGO/Advanced Virgo




GW sources

Well-modeled

Poorly-modeled



Stochastic Gravitational-wave
Background

Unresolved astrophysical sources
e CBCs

e Rotating neutron stars

Early universe models

cosmic strings

Gaussian
unpolarized
stationary
Isotropic
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Critical energy density o

to close the universe
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Stochastic Gravitational-wave
Background

e Unresolved astrophysical sources e Gaussian
e CBCs e unpolarized
e Pulsars e stationary

e Early universe models e Isotropic

e COSmic strings

Energy density of GWs

What LIGO
g4 Measures

Critical energy density
to close the universe



Another case for low frequencies:
BBH systems

Higher-mass BBH systems coalesce at (much) lower
frequencies

Cosmological red shift —> further-away systems get redshifted

Higher-mass —> inspiral faster at a given frequency (i.e. fdot at
a given fis higher for higher mass systems)

Lower frequencies —>get more cycles —> more likely to see
higher-mass (and more distance) black hole systems
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Proposed low frequency



“Use current facilities, but max
out all of the current
technology” | ---. seismic

- quantum |[---- auxiliary

Better auxiliary sensors —> thermal scatter

better damping/angular
controls

Double pendulum length in
suspensions
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Increase fibre tensions

Larger test masses Frequency [Hz]

e (40 kg —> 200 kg)
Yu, H., et al. (2018). https://doi.org/10.1103/PhysRevLett.120.141102
More squeezing
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BBH improvements

= Horizon

—LIGO-LF |
A+
—allGO

Redshift z
Detections per year

= | |GO-LF
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|6®,| [rad]
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Frequency [Hz] fspin [HZ]

Yu, H., et al. (2018). https://doi.org/10.1103/PhysRevLett.120.141102
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Cosmic Explorer

Cosmic Explorer, Wideband (expected R&D improvements)
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Abbott, B. P., et al. (2017). 34(4), 44001. https://doi.org/10.1088/1361-6382/aa51f4
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CE SGWB Sensitivity

N

Qcae (Median)

ALV Sensitivity

CE Sensitivity

Slow roll inflation (r=0.07)
Qcse (Poisson)

10°
Frequency (Hz)




Other proposed (ground-based)
detectors

Einstein Telescope — 10 km triangular configuration (European
proposal) (O(1 Hz) — O(1 kHz)) [http://www.et-gw.eu/]

T 7

MANGO — laser & atom interferometer (.01 Hz — 1 Hz)

A 4

TOBA — “Torsion bar antenna” (1e-3Hz — 10 Hz)

TorPeDO — torsion bar, ANU, (1e-3 Hz — 10 Hz)

e Could also be useful for directly measuring Newtonian Noise
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http://www.et-gw.eu/
https://doi.org/10.1103/PhysRevD.88.122003
https://doi.org/10.1088/1361-6382/aa7103

Newtonian Noise



Newtonian Noise

Gravitational fluctuations at the test mass
Density/temperature perturbations in atmosphere

Seismic waves

Likely to become a limiting noise source for advanced detectors at lower
frequencies
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Newtonian Noise

o Perturbation to gravitational field related by displacement
field,

e ¢ isdifferent for different types of seismic waves

e Name of the game: estimate ¢ for different types of seismic
WEVES
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https://ldas-jobs.ligo.caltech.edu/~meyers/homestake/

GOALS:

o Estimate amplitude of different seismic waves
simultaneously
e From this, estimate Newtonian Noise



Homestake array

Located at Sanford Underground Research
Facility in Lead, SD.

Collaborators at CIT, Indiana University, .
University of Minnesota &

24 seismometers
15 underground
9 surface

STS2 and Guralp 3T

Ran from November 2014 - December 2016 S M gy \ P %
Roughly 1 cubic mile = T e e e xed

Data set is now public on IRIS
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Seismic radiometer

Try to decouple different wave types

Reconstruct propagation direction and amplitude for each type

Field amplitude in
direction d (or basis
element for sky

mmslesamposition)

Correlation of ith channel pair

Direction, d: ¢,0

maximum likelihood estimator

: Use maps to get NN estimates



Brief aside:

Gamma matrices

a=channel of detector “i” (i.e., N, E, V)

({2 RL,

B=channel of detector |
a=basis function label

vl = [ a2 [Qul) (ru(2)- 6~ ey (2) 2+ ) %

(TH(z)Q B — e_mmrv(z) zZ - B) eszQ'Af/”R} :
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Brief aside:

Gamma matrices

Basis function (delta functions)

rv(z) 2 - 64) X

Tv(Z) 5. B) 627rifQ-Af/vR} .
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Brief aside:

Gamma matrices

Propagation direction

(TH(z)Q B — e_i”/zfr'v(z) x A) eszQ'Af/”R} :
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Brief aside:

Gamma matrices

alpha/beta Phase difference
(retrograde motion)

vl = [ a9 [Qul@) (ru(2)9- & —V(Z) 2-a) x

(TH(z)Q .3 — e_i”/zrv(z) zZ - B) emeQ'Af/”R} :
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Brief aside:

Gamma matrices

(TH(Z)Q : B » e—m/zrv(z) P B Z2mifQ-AF/vR\

Phase difference between | and j
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Brief aside:

Gamma matrices

Govern how R-wave amp
fall with depth
(measured later)
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Seismic radiometer

Rayleigh and P-waves both injected
Recovered in proper direction
Amplitudes not quite right when 2 sources are present

(injections violate one assumption of search)

p-wave recovery for r and p-wave injection

kX



Seismic radiometer

S-wave injection/recovery

sp-wave recovery for sp-wave injection S,~wave recovery for s;-wave injection
75° -

0° 30 60° 90° 120° 150° 0° 30° 60° 90° 120° 150°
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Seismic Radiometer
1.5-2 Hz Source

There is a source of (presumably) R-waves at 1.5 Hz
Turns on and off at certain times of the day
Would like to use Radiometer to resolve direction

Will compare to a pure plane-wave model
YATES Vertical to Radial P

E
."';
U'J"

J,;.'
i
el

I
l"l
I : ll‘

al
o
1 IT:

i

!

1

i
gl

¥
|
!

.i.:;l

W
b
FI. ‘;

1
Ill l'l I

!
[l J
A
s
Ilhl
J!hl hl

N
il
:
Py
1
i o

g
Fl
I
i

M

J i

|
4

\

i
I
b
g
Y

m

il
IL}[
il
.A
i

F

‘Il b |

&I

i

!
i
b

Vi

1 bl
:
|
J
hllllll

R~
o

b g

]
ti
f

i
:"ﬂf ;
i
i
'
by
il

, .q’
W

i
;

L:
y,

':14

il

\
!
g
| IJI

-!

;
‘*;?
| i': NN
2

at
:
h
]
)
1§58
el
!
I
i
A
au
A

i
| i
5

o
a
i

| .
1

m
e
Ivl

il

i iy

!

o

’I
)
0l

|
y
il
i
J
|
W
|
Py
III
L

|
:

II”

b

|

!

| Ifll
| a.h. f

ﬂl' |
I.ﬁg'
)
Rl
I\
;
I
i

i
]
\
|
] ]
y

j;l;uﬂ

|
i)
i
:

i}
e L

:

:
I

hy
|
:
b
|
!
:

’t
ﬁ'l

| NN A

!
i,

1l
JF
i

M,

K
i

{
1l

in
i

i
'.*7

l

i

:%
i

+r

A

i
e

-1

T
g
by
hi
i
I

—

J
1
b

T
!'"m
}

N
=23
=
o
8 S e
—
o
=
=

iy

!
hik
:
Lt
| ‘E
A
!

i
|
1
lk-
(il
[l
Wl
Wi
IL ‘Ej
]
il
s
i,
i
b
.
o

i

’Il

':|I|
| "|
i
ﬁ

|||uﬁ'
W
ltl
§
i

il
Wil
I
I]
!

'l
ﬂ' :
:
:

I”l I

-
w
éﬁ
lIIl
i
fan )

|
llu”llllll‘
it
f | III

I
at
il
‘?:

r”."

_‘1".:'
[

rlll

1

IHP‘I
-J,i
| l“.

o
3
!

et
T
o

”II

|IH |“|
|
|Illl
Y

L
3

]

i
i,

|

|
1]
1
(1

il
i
b

%
h
li
4}
Fi]
h
i
i
il

l

Wt
)

L

|

iy

s

!

|

.,l“n
i
¢
&
h
1
|

‘.
I"
f
I'l
h
i

A
iy
(e

il
[rlll
1.]

i
!
"

,f.}
#
!
:
l

I

iy
.'.v'
"

E
II '
|
bl I

=_mmmE =
e —— —

2.5 335 4 D
Time [hours| from 2015-09-13 06:00:00 UTC (1126159217)

!

{

&
i,
#
i

i

,IF
o
J

o




1.5 Hz source

Velocity and direction recovery: ¢ = 2.4° v = 2.94 km/s

e Use phase-delay between -
stations to estimate velocity, |
v, and direction, Q.

e Assuming pure-plane-wave,
the phase delay should be:

36



1.5 Hz source

R-recovery
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Estimate NN from maps

e We can now try to estimate the Newtonian noise from our
recovery maps

¢ Run radiometer from 0.5-5Hzin 0.5 Hz increments

o Assume “CE-like” detector (i.e. 40 km arms)
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Estimating Newtonian noise
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Newtonian noise estimates

o Need better testing/assurance that recovered amplitudes
make sense

o Currently we normalise the maps by the average total
power in the surface stations across all three directions

e This should work “effectively” but is not ideal
o Need to figure out how to properly deal with “negative” power

e We’ve made some “estimates”
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Dealing with Newtonian noise

e Can’tshield
e Wiener filter?
o Budget?

e Site selection?

41



Wiener filter

e Coughlin+Harms

e Results for “cleaning” seismometer data using other seismometers is
Impressive

e Goalisto eventually use something like this for NN

e Geophone array and tilt-meters are installed at Virgo for explicit testing
once we start to measure NN

e Might be difficult because filters likely need to change as a function of time
e Kalman filter?

e Adaptive filter?

42



Wiener filter results
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Recap



Seismology sidetracks

REMEMBER THIS?!

Govern how R-wave amp
fall with depth
(measured later)
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Seismology sidetracks

REMEMBER THIS?!

vl = [ a2 [Qul) (ru(2)- 6~ ey (2) 2 ) %

, B) 627rifQ-Af/vR} |

Govern how R-wave amp
fall with depth
(measured later)

“Rayleigh-wave eigenfunctions”
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Surface-wave eigenfunctions

e Two types of surface waves — “Rayleigh” and “Love”
e Rayleigh—

e superposition of P- and S-waves

e Travel along surface

e Elliptical particle motion

47



Surface-wave eigenfunctions

e Two types of surface waves — “Rayleigh” and “Love”
e Love—
e Superposition of *multiply reflected S-waves*
e Needs S-wave velocity profile that increases with depth
e S-waves get refracted in this profile, turn around, and
reflect off of the surface again

e Both types of surface wave have amplitudes that fall off with
depth (“surface-wave eigenfunctions”)
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Homestake is special

e There are not many 3D arrays

e There are borehole arrays — usually smaller scale, often use
single-component sensors

e Usually experiments are confined to the surface
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Measuring eigenfunctions

o Use the amplitude of the Rayleigh-wave part of a signal from
mine blasts

O412Hde ed signal

\/\J\v\/ \ / ~
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-
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)
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—
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20 40 60 80 100 120
Time [s] from blast event
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U4
i k.

Amphtude Amplitude

@ Mine blast observations for T
= Simple model fit
== Velocity estimate for T

@ Mine blast observations for R
@ Mine blast observations for V
= Simple model fit

= = Velocity estimate for R

= = Velocity estimate for V




Two fits — theoretical and empirical

e On theresults plot there are data points and two fits

e FIT 1 — fits theory to the data points

o Assume S-waves have a velocity depth profile that goes like
a power law

e This gives a functional form for R and L-wave
eigenfunctions with some (frequency independent) free
SEICINEES

o We fit those free parameters using a nested sampling
technique
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U4
i k.

Amphtude Amplitude

@ Mine blast observations for T
= Simple model fit
== Velocity estimate for T

@ Mine blast observations for R
@ Mine blast observations for V
= Simple model fit

= = Velocity estimate for R

= = Velocity estimate for V




Two fits — theoretical and empirical

e Ontheresults plot there are data points and two fits

e “FIT” 2 — independent analysis that produces results based
on a model

e Assume S-waves have a velocity depth profile that goes like
a power law

e Use velocity dispersion of R- and L-waves to infer an S-wave
velocity depth profile

e Usethisinferred velocity depth profile to estimate the R
and L-wave eigenfunctions
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Dispersion + Depth profile estimates

Rayleigh Group
Love Group
- - - Rayleigh Phase
- - - Love Phase
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U4
i k.

Amphtude Amplitude

@ Mine blast observations for T
= Simple model fit
== Velocity estimate for T

@ Mine blast observations for R
@ Mine blast observations for V
= Simple model fit

= = Velocity estimate for R

= = Velocity estimate for V




Conclusions

o Useful verification of a classical seismological result
e Result of cross-disciplinary cooperation
e This project likely doesn’t happen without GW application

o Seismological applications make it very compelling as a
project with several purposes

57



Conclusions

Lower frequencies —> interesting GW sources, cosmology, and
astrophysics

Newtonian noise will likely be an issue

nitial estimates of NN from seismology indicate it could
potentially be an issue

nteresting cross-disciplinary work comes out as a natural
oyproduct of working on areas of mutual interest
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EXTRA



SGWB searches

e We construct an estimator for the energy density in each small
frequency bin (and its variance):

Power spectral
density of the
noise in each

detector
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LSC
e SGWB Sources

unresolved compact binary mergers
binary neutron stars in LIGO frequency band at any one time
binary black hole coalescence every

BBH+BNS
BNS
BBH
- 02 Sensitivity
O3 Sensitivity
- Design Sensitivity
Poisson

F requency [ HZ] NOTE: Rough estimates
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http://doi.org/10.1103/PhysRevLett.120.091101

GW Amplitude



GW Amplitude

Falls off as r-!



GW Amplitude

Falls off as r-!

10-44 N-L



GW Amplitude

Falls off as r-?
Quadrupole moment

10-44 N-L



GW Amplitude

Falls off as r-?
Quadrupole moment

10-44 N-1

For LIGO detectors:



GW Amplitude

Falls off as r-?
Quadrupole moment

10-44 N-1

For LIGO detectors:



SGWB searches

e There are not well-defined templates for the SGWB
e Sowe data between detectors
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SGWB searches

o There are not well-defined signals for the SGWB
e Sowe data between detectors

GW signal

noise
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SGWB searches

o There are not well-defined signals for the SGWB
e Sowe data between detectors

GW signal

Substitute and take time average...

noise
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SGWB searches

o There are not well-defined signals for the SGWB
e Sowe data between detectors

GW signal

Substitute and take time average...

Signal and noise are
uncorrelated

noise
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SGWB searches

o There are not well-defined signals for the SGWB

e Sowe data between detectors

noise

GW signal

Substitute and take time average...

Signal and noise are
uncorrelated

noise is uncorrelated
between detectors
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GWB Sources/Detectors

Lasky, P. D., et al. (2016). temperature (GeV)
PHYSICAL REVIEW X, 6(1), 2 107 10° 10! 10° 10° 10" 10"
11035. https://doi.org/

10.1103/PhysRevX.6.011035 : Indirect LIGO and Virgo, /

10720 1071 1072 108 104
frequency (Hz)

BBH+BNS
BNS
BBH
02 Sensitivity
03 Sensitivity
- Design Sensitivity
Poisson

Abbott, B. P., et al. (2018). Phys Rev Lett,

120(9), 091101. http://doi.org/10.1103/
PhysRevlett.120.091101

Frequency [Hz]
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CE facts

Table 1. Parameters used to produce the Cosmic Explorer (CE) target curve. The CE

pessimistic and Einstein telescope, high- and low-frequency (HF and LF) parameters
are included for comparison.

CE CE pess ET-D (HF) ET-D (LF)

Lom 40 km 10 km 10 km

Prm 1.4 MW 3 MW 18kW

A 1064 nm 1064 nm 1550 nm
Ysqz 3 3 3

MM 320 kg 200 kg 200kg
I'beam 12 cm 9 cm 7 ecm (LG33)
T 290 K 290 K 10K

Dett 1.2 x 1074 1.2 x 1074 1.3 x 1074

Abbott, B. P., et al. (2017). 34(4), 44001. https://doi.org/10.1088/1361-6382/aa51f4
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Gas noise — Expected noise
MICH control

) — Measured noise SRCL control
J Quantum noise — Angular controls
' — Dark noise Output jitter
B — Seismic+Newtonian Suspension damping
, — Thermal noise —— Suspension actuation

Displacement, m/Hz!/?

e Seismic noise — moving
Frequency, Hz
platforms that hold suspensions (a) LIGO Livingston Observatory

]
— Measured noise — Frequency noise
Quantum noise — Intensity noise
— Dark noise Input jitter
— Thermal noise — RF oscillator noise|
|

e Angular controls — controlling |pemetse - — popaod
angular degrees of freedom of
mirrors

Displacement, m/Hz!/?

¢ Quantum noise — radiation
p ressure (b) LIGO Ha,n?:):l(ltlelg‘t};’serzvatory
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