

Pol Gurri

A.Prof. Ned Taylor Prof. Chris Fluke

Swinburne University of Technology

Galaxies live inside dark matter halos

Stellar to Halo Mass Relation

Abundance Matching

Weak Lensing

Lens (foreground)

(foreground)

Overcoming shape noise

Lens (foreground)

Stellar to Halo Mass Relation

Develop and *exploit* a new high-precision weak lensing technique

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Circular shape

Circular motion

Circular shape

Circular motion

Dynamical Shape noise

,

 $\gamma^{obs} = \gamma^{true} + \frac{\sigma}{\sin(2\phi)}$

 $\gamma^{obs} = \gamma^{true} + \frac{1}{\sin(2\phi)}$

Target Selection

z < 0.15 & i < 17.5

 $\gamma_{pred} > 0.001$

3000 systems

KOALA (3.9m) + WIFES (2.3m)

Data

Observations

+30 nights

100 galaxies

Analysis

Custom Data Reduction

Vel with shear modelling

21 useful targets

b) $\gamma = 0.041 \pm 0.009$ c) $\gamma = -0.024 \pm 0.015$

Gurri et. al. 2020a

 $\langle \gamma \rangle = 0.021 \pm 0.005$

Gurri et. al. 2020a

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

The Shape of Shear

$\gamma^{obs} \neq \gamma^{pred}$

The Shape of Shear

Dynamical shape noise + dispersion in SHMR vobs γ^{pred}

 $\gamma^{obs} \neq \gamma^{pred}$

The Shape of Shear

Gurri et. al. 2020b

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Dispersion in the SHMR

Dispersion in the SHMR

$\xi = 0.4 \, dex$

15

Dispersion in the SHMR

Can we detect lensing though velocity fields? Can we separate noise from lensing? Can we constrain the SHMR's dispersion & shape?

Contribution to Research Area

1. A new methodology to do weak lensing

2. Published the first dataset of weakly lensed vel. fields 3. Opened a way to measure the dispersion in the SHMR

