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— Understand how we make discoveries

Sarah Hegarty | Melbourne University | August29th, 2018



Technological Development

Sarah Hegarty | Melbourne University | August29th, 2018



Technological Development

Astronomical discoveries tend to be made when new technology enables the construction of a new
telescope or instrument that can make observations that were previously impossible.
Harwit (1981)
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Astronomical discoveries tend to be made when new technology enables the construction of a new
telescope or instrument that can make observations that were previously impossible.
Harwit (1981)
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“Theoretical anticipation has usually had little to do with astronomical discovery”
(Wilkinson+, 2004)
“Astronomy is powered by serendipitous observations”
(Fabian, 2009)
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The Importance of Visualisation
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The Importance of Visualisation
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‘Visualization is a crucial component of knowledge discovery in astronomy....at present, humans have
pattern recognition and feature identification skills that exceed those of any existing automated approach.’
(Hassan & Fluke 2011)
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Astronomical Expertise

DEFNAM * PAKIS GV AOA

https://www.newscientist.com/article/mg23531370-800

‘Discoveries invariably result from an individual becoming so familiar with the data, and hence the
possible sources of error in them, that he/she can recognize an unexpected clue for what it is worth. ‘
(Wilkinson et al., 2004)
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How can we capitalise on the discovery potential of data-intensive astronomy?

— Understand how we make discoveries
— Use this understanding to “design in” discovery when we build data-intensive
workflows
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Designing Effective Discovery Workflows

Automated pipelines and machine-learning approaches are essential for data-intensive astronomy
but

We must integrate a role for the human astronomer alongside automated methods to maintain
discovery mechanisms that we know to be important

Manual Inspection
100% 80% 60% 40% 20% 0%

0% 20% 40% . 60% 80% 100%

Automated Inspection
Fine-tune to maximise

discovery

Adapted from Fluke et al. (2016)
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A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.)

Sarah Hegarty | Melbourne University | August29th, 2018



A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.) Sty gt o

®iPTE14aue
iPTF13dsw

Relativistic Explosions .
Luminous Supernovae

o
.‘.
L

iPTF13bxI @ iPTF14bfu

Thermonuclear
° Supernovae

® Core-Collapse
Ja Explosions g @ Supernovae
e «w
Calcium-rich
L] . °
Gap Transients ' |ntermediate
®_uminosity
Red
40
® Transients {10

—=
=3
>
=
12
o
IS
£
== |
|
K4
[]
(9]
(ol

Peak Luminosity [erg 5_1]

°
° Luminous &

° Red
o® Novae L

°
® oo  ®e Classical Novae
) |
® ®
®
e

10’
Characteristic Timescale [day]

Nugent, 2015

Sarah Hegarty | Melbourne University | August29th, 2018



A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.) Sty gt o

®iPTE14aue
®iPTF13dsw

Relativistic Explosions .
Luminous Supernovae

o
.‘.
L

iPTF13bxI @ iPTF14bfu

[  Targets transients on timescales from
hours down to seconds

Thermonuclear
° Supernovae

® Core-Collapse
Ja Explosions g @ Supernovae
e «w
Calcium-rich
L] . °
Gap Transients ' |ntermediate
®_uminosity
Red
40
® Transients {10

—=
=3
>
=
12
o
IS
£
== |
|
K4
[]
(9]
(ol

Peak Luminosity [erg 5_1]

°
° Luminous &

° Red
o® Novae L

°
° ® oo e Classical Novae

o 8 P 38

110

Characteristic Timescale [day]

Nugent, 2015

Sarah Hegarty | Melbourne University | August29th, 2018



A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.)
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A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.)

[ Targets transients on timescales from
hours down to seconds

[  Aimsto achieve real-time,

multiwavelength observations, and
rapid multiwavelength follow up
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A Case Study: Deeper, Wider, Faster

A detection and follow-up program for
fast transients (Cooke+, in prep.)
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster

3 square degree FOV
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~60 CCD images / 40 seconds JPEG2000 data compression
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster

Visual inspection by
3 square degree FOV volunteer astronomers
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster
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A Case Study: Deeper, Wider, Faster
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Integrating the visualisation, analysis and assessment work of volunteer astronomers as part of the
DWF workflow would allow us to:

Photos courtesy B. Meade
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A Case Study: Deeper, Wider, Faster
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Integrating the visualisation, analysis and assessment work of volunteer astronomers as part of the
DWF workflow would allow us to:

[ Continue capitalising on the expertise and crucial discovery skills of these astronomers

Photos courtesy B. Meade
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A Case Study: Deeper, Wider, Faster
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Integrating the visualisation, analysis and assessment work of volunteer astronomers as part of the
DWF workflow would allow us to:

[ Continue capitalising on the expertise and crucial discovery skills of these astronomers
3 Simplify and streamline the discovery workflow, and remove margin for error

Photos courtesy B. Meade
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A Case Study: Deeper, Wider, Faster
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Integrating the visualisation, analysis and assessment work of volunteer astronomers as part of the
DWF workflow would allow us to:

[ Continue capitalising on the expertise and crucial discovery skills of these astronomers
3 Simplify and streamline the discovery workflow, and remove margin for error
1 Better understand the discovery process itself

Photos courtesy B. Meade
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A Case Study: Deeper, Wider, Faster

image 1 | Science FWHM : i PSF matching, | | Subtracted
image 2 |: image estimation alignmen normalisation, image

subtraction

' image N |: crosstalk bad sub. . i
EEESSSS X identification Zelfg pgint”

] . non-PSF source
image a e shapes extraction
image b F— ; rejection

saturating
*

Template sources catalogs

——— ihage CCD issues _. ranking
archival (ML)

image | — :
~ - crosstalk list of candidates,
region files,
small “postage

stamp” images
web server and | T

visualisation tools

' image M

template |
of other light curves DATABASE
Mary run 1

Andreoni+, 2017

Sarah Hegarty | Melbourne University | August29th, 2018



PerSieve
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PerSieve

00 Anapplication for interactive visualisation and assessment - in real time, in the browser
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PerSieve

00 Anapplication for interactive visualisation and assessment - in real time, in the browser
[ Integrates visualisation and the human astronomer into DWF's automated pipeline
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PerSieve

00 Anapplication for interactive visualisation and assessment - in real time, in the browser
[ Integrates visualisation and the human astronomer into DWF's automated pipeline

Introduction Candidate Viewer Summary

Brightness Profile Light Curve

156.91562742 -34.400742377

#  Type (1=pt, 2=ext Separation (arcsec) RA Jmag Jmag_err Hmag_err Kmag_err

1 4 0.0 0.0 0.0 0.0 0.0 0.0 . 0.0

-
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February 2018 DWF Observing Campaign

3 During a four-night, Subaru-led DWF observing campaign, PerSieve was used successfully as
the primary visualisation and analysis tool
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3 During a four-night, Subaru-led DWF observing campaign, PerSieve was used successfully as
the primary visualisation and analysis tool
(  Over 30 astronomers participated on-site
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February 2018 DWF Observing Campaign

3 During a four-night, Subaru-led DWF observing campaign, PerSieve was used successfully as
the primary visualisation and analysis tool

(  Over 30 astronomers participated on-site

[  Over 20 astronomers used PerSieve to participate remotely
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February 2018 DWF Observing Campaign

3 During a four-night, Subaru-led DWF observing campaign, PerSieve was used successfully as
the primary visualisation and analysis tool

(  Over 30 astronomers participated on-site

[  Over 20 astronomers used PerSieve to participate remotely

¥ >14,000 transient candidates assessed!
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Studying the February 2018 DWF Observing Campaign
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Studying the February 2018 DWF Observing Campaign

| also captured detailed analytics of the volunteers’ work and decision making processes*

*With the approval of the Swinburne Human Research Ethics Committee, and the informed consent of all participants
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— What do they look at?
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— What evaluations do they make?
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Studying the February 2018 DWF Observing Campaign

| also captured detailed analytics of the volunteers’ work and decision making processes*

— What do they look at?
— How do they look at it?
— What evaluations do they make?

— What does an “effective” discovery workflow look like?

— What can we learn about expertise?

*With the approval of the Swinburne Human Research Ethics Committee, and the informed consent of all participants

Sarah Hegarty | Melbourne University | August29th, 2018



STUDYING THE FEBRUARY 2018 DWF OBSERVING CAMPAIGN

A Each interaction with the data, and the web framework, was tracked in detail
[ Volunteers self-rated their astronomical expertise: Novice/Intermediate/Expert

m Almost 19,000 total ‘decision workflows' were captured

m 21'novices assessed ~3700 transient candidates between them

m 8 'intermediates’ assessed ~630 transient candidates between them
m 3 'experts’ assessed ~3700 transient candidates between them
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Studying the February 2018 DWF Observing Campaign

0 actions

1 actions

9 actions
2 actions

>50 actions

>20 actions

3 actions Rated: 0
7 actions

5 actions

>100 actions Rated: 4
4 actions 3
>10 actions Rated5
10 actions Rated: 3
8 actions Rated: 0

Flow diagram of ‘Novice’ workflows: interactions made with the data and final object ratings from 0 (least interesting) to 5 (most interesting)
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Studying the February 2018 DWF Observing Campaign

0 actions

Rated: 2

1 actions

Rated: 4
3 actions

2 actions Rated: 3

>20 actions
>10 actions
= >100 actions

>50 actions :
4 actions Rated' 5

Rated: 0

Flow diagram of ‘Intermediate’ workflows: interactions made with the data and final object ratings from 0 (least interesting) to 5 (most interesting)
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Studying the February 2018 DWF Observing Campaign

0 actions Rated: 0

Rated: 2

Rated: 4
2 actions
i Rated: 3
3 actions
>100 actions Rated: 1 w=

Flow diagram of Expert workflows: interactions made with the data and final object ratings from 0 (least interesting) to 5 (most interesting)
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STUDYING THE FEBRUARY 2018 DWF OBSERVING CAMPAIGN

A Each interaction with the data, and the web framework, was tracked in detail
[ Volunteers self-rated their astronomical expertise: Novice/Intermediate/Expert

m Almost 19,000 total ‘decision workflows' were captured

m 21 'novices’ assessed ~3700 transient candidates between them

m 8 'intermediates’ assessed ~630 transient candidates between them
m 3 'experts’ assessed ~3700 transient candidates between them

This data is enabling a range of different analyses of how human astronomers make discoveries
We can use this knowledge to help build the human factor into other workflows

Outside astronomy, this project is also guiding research into data-driven decision making
(collaboration with Dr Clare MacMahon, Dr Lisa Wise, and teams)
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summary

e The dataintensive era will offer us unprecedented discovery potential: but it will also challenge
our existing ways of making discoveries

e We need to “designin” discovery capabilities as we develop our workflows for the era of
data-intensive astronomy

e Keeping the astronomer “in the loop” is a valuable way to make this happen, as we have
demonstrated using PerSieve within the Deeper, Wider, Faster project

e We are using this platform to study the astronomer in situ, and learn even more about how they
work and make decisions

e What we learn will help us build tools to capitalise on our discovery potential
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