## Stellar Metallicities and Galaxy Quenching in the SAMI Survey

### Dr. Sam Vaughan University of Sydney

University of Melbourne Colloquium 02/12/2020

## Quick outline

- What can we learn from studying stellar populations?
- Measuring stellar metallicity
- A toy model of galaxy evolution





### Why are stellar populations useful?

- The present-day metallicity and age of a galaxy give us clues about its formation history.
- relates to a galaxy's quenching **timescale**.
- Simulations show that steep metallicity gradients are expected from a



# • Peng et al. (2015) & Trussler et al. (2020) discuss the idea that metallicity

simple "monolithic collapse" formation scenario, whilst a series of minor mergers/accretion of satellites tends to flatten gradients (e.g. Cook+2016)

The spectrum we observe is a linear combination of individual spectra



The spectrum we observe is a linear combination of individual stellar spectra



The spectrum we observe is a linear combination of individual stellar spectra



The spectrum we observe is a linear combination of individual stellar spectra



#### **Galaxies are made of stars...** The spectrum we observe is a linear combination of individual stellar spectra



By ESA/Hubble & NASA Image acknowledgement: Judy Schmidt and J. Blakeslee (Dominion Astrophysical Observatory).

#### Galaxies are made of stars... The spectrum we observe is a linear combination of individual stellar spectra





By ESA/Hubble & NASA Image acknowledgement: Judy Schmidt and J. Blakeslee (Dominion Astrophysical Observatory).



#### **Galaxies are made of stars...** The spectrum we observe is a linear combination of individual stellar spectra







### We can reverse this process to learn about the stellar populations of galaxies





#### We can reverse this process to learn about the stellar populations of galaxies Some things to note:

- I don't use spectra of individual stars as my 'building blocks'. Not all combinations of stars are seen together in the Universe!
- Instead, I use spectra of 'simple stellar populations' (SSPs). SSPs are snapshots of the spectrum a collection of stars (which formed at the same time and with the same chemical **properties**) would have at a given time since formation.
- Specifically, the MILES library. The templates I've chosen span ages between 0.03-14 Gyrs, metallicities between -1.49 to +0.4 dex and alpha enhancements between 0.0 to +0.4 dex.
- I've fit these templates to the Voronoi-binned spectra from the SAMI survey (S/N of 20) using pPXF (Cappellari+2017). Overall, this lead to 79,160 separate fits from 1905 galaxies



#### An example output... **CATID 106717**



#### SDSS postage stamp image





Age (Gyrs)

(Light-weighted)

[Z/H] (Light-weighted)



# Focussing on metallicity...

- I've made metallicity maps for each galaxy in my SAMI sample. I now need to measure their metallicity gradients and their metallicities at r=0
- We have a lot of prior knowledge about the gradients and central metallicities of galaxies
- I've incorporated this prior knowledge into a bayesian "hierarchical model"
- The prior on the slope for each galaxy depends on its stellar mass, and the prior on the intercept for each galaxy depend on its stellar mass and star-formation rate
- The key thing is- <u>we estimate the prior dependence on these quantities from the data itself.</u> I'm not putting in any relationships by hand

## Focussing on metallicity...



## The mass/size plane





#### Mass/metallicity and potential/metallicity planes Mass Φ 0.50.50.0 0.0 -0.5 $[Z/H]_0$ $/\mathrm{H}]_0$ $\underline{N} - 1.0$ -1.5-1.5-2.0-2.0 -1010 1211 $\log_{10}\left(\frac{M_*}{M_{\odot}}\right) - \log_{10}\left(\frac{r_e}{\mathrm{kpc}}\right)$ $\log_{10}\left(\frac{M_*}{M_{\odot}}\right)$ Good agreement with Trussler et al. 2020 and Peng et al. 2015



# **Slow Quenching and Stellar Metallicity**

- When a galaxy is forming stars, its stellar metallicity is regulated by its gas-phase metallicity (Peng & Maiolino 2014)
- Stellar evolution tends to increase a galaxy's gas-phase metallicity
- Accretion of pristine halo gas tends to decrease it



# **Slow Quenching and Stellar Metallicity**

- If you cut off a galaxy's supply of halo gas, its gas-phase metallicity will sharply increase and so its overall stellar metallicity will too
- Peng et al. 2015 and Trussler et al. 2020 use this idea to explain the difference in [Z/H] between quenched and star-forming galaxies



# **Slow Quenching and Stellar Metallicity**

- If you cut off a galaxy's supply of halo gas, its gas-phase metallicity will sharply increase and so its overall stellar metallicity will too
- Peng et al. 2015 and Trussler et al. 2020 use this idea to explain the difference in [Z/H] between quenched and star-forming galaxies



- and a size based on observational measurements (or simple extrapolations).
- relations are the same at high redshift as they are today.
- Give galaxies a metallicity based on this

# • Take a range of redshifts between (1 and 10). Give galaxies a stellar mass

# Assume that the slope of the mass/metallicity and potential/metallicity

- Evolve galaxies forward in steps of 10Myrs.
- Star-forming galaxies form a set amount of mass each timestep which places them on the main sequence of star formation
- Assume they increase their size according to  $\Delta \log(R) \sim 0.3 \Delta \log(Mstar)$  (e.g. van Dokkum+2015)
- Assume they increase their metallicity according to  $\Delta$  [Z/H] ~ 0.45  $\Delta$  log(Potential) (based on my fit to the potential/metallicity plane)

- Now have galaxies quench in a way which depends on their mass and size
- Once galaxies quench, they stop growing in mass, size and metallicity
- I've tried looking at quenching based on potential (m/r), and quenching based on surface mass density (m/r~2). A less obvious combination gave the best results- m/r~(3/2)



- Sample my galaxies to have the same mass-function as SAMI
- Add in observational uncertainties as random scatter
- Compare to the SAMI centrals, since SAMI satellites may have quenched due to environmental processes









 Slow quenching evolution in the mass-metallicity plane (Peng et al. & Trussler et al.)





# Toy model evolution in the mass-size plane





# Toy model evolution in the mass-size plane





## Conclusions

- I've measured stellar metallicity (and age) gradients for ~2k galaxies in the SAMI survey.
- Whilst some authors have used similar data to conclude that quenching is slow, my toy model shows that quenching can be fast as long as a galaxy's size influences the likelihood of quenching. This ties in with other recent work suggesting that extended galaxies quench later than "normal" sizes ones (Gupta et al. 2020)
- The combination of mass 1.5 times size is a bit strange. Perhaps hinting that some quenching processes depend on potential, some depend on surface mass density, and these "average out"?
- There is still room for slow quenching processes!

### **Results- not using a Hierarchical Model Hierarchical Model** Fitting each galaxy individually





# Results- not using a Hierarchical Model

#### Hierarchical Model



### Fitting each galaxy individually

# Results- not using a Hierarchical ModelHierarchical ModelFitting each galaxy individually

