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Quick outline

• What can we learn from 
studying stellar populations? 

• Measuring stellar metallicity 

• A toy model of galaxy 
evolution 



Why are stellar populations useful?

• The present-day metallicity and age of a galaxy give us clues about its 
formation history.  

• Peng et al. (2015) & Trussler et al. (2020) discuss the idea that metallicity 
relates to a galaxy’s quenching timescale. 

• Simulations show that steep metallicity gradients are expected from a 
simple “monolithic collapse” formation scenario, whilst a series of minor 
mergers/accretion of satellites tends to flatten gradients (e.g. Cook+2016) 
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Galaxies are made of stars…

LOSVD*
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0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F
lu

x
(a

rb
.

un
it

s)

279932
The spectrum we observe is a linear combination of individual stellar spectra



We can reverse this process to learn about the stellar populations of galaxies
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We can reverse this process to learn about the stellar populations of galaxies

• I don’t use spectra of individual stars as my ‘building blocks’. Not all combinations of stars 
are seen together in the Universe! 

• Instead, I use spectra of  ‘simple stellar populations’ (SSPs). SSPs are snapshots of the 
spectrum a collection of stars (which formed at the same time and with the same chemical 
properties) would have at a given time since formation. 

• Specifically, the MILES library. The templates I’ve chosen span ages between 0.03-14 Gyrs, 
metallicities between -1.49 to +0.4 dex and alpha enhancements between 0.0 to +0.4 dex.  

• I’ve fit these templates to the Voronoi-binned spectra from the SAMI survey (S/N of 20) 
using pPXF (Cappellari+2017). Overall, this lead to 79,160 separate fits from 1905 galaxies

Some things to note:



An example output…
CATID 106717

SDSS postage stamp image Age (Gyrs) 

(Light-weighted )

0.162.5

[Z/H] 

(Light-weighted)

-1.2-0.2



Focussing on metallicity…
• I’ve made metallicity maps  for each galaxy in my SAMI sample. I now need to measure their 

metallicity gradients and their metallicities at r=0 

• We have a lot of prior knowledge about the gradients and central metallicities of galaxies 

• I’ve incorporated this prior knowledge into a bayesian “hierarchical model” 

• The prior on the slope for each galaxy depends on its stellar mass, and the prior on the intercept 
for each galaxy depend on its stellar mass and star-formation rate 

• The key thing is- we estimate the prior dependence on these quantities from the data itself. I’m 
not putting in any relationships by hand



Focussing on metallicity…

0.0 0.5 1.0 1.5

r/re

0.0

0.2

0.4

[Z
/H

]

CATID: 272443

0.0 0.5 1.0

r/re

�1

0

[Z
/H

]

CATID: 15898

0 1

r/re

�0.5

0.0

[Z
/H

]

CATID: 381979

0.0 0.5 1.0 1.5

r/re

�0.25

0.00

0.25

[Z
/H

]

CATID: 9016800303

0 1 2

r/re

�0.5

0.0

0.5

[Z
/H

]

CATID: 422443



The mass/size plane
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Mass/metallicity and potential/metallicity planes
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Mass/metallicity and potential/metallicity planes
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Good agreement with Trussler et al. 2020 and Peng et al. 2015

Matches Barone et al. 2018 & 2020



Slow Quenching and Stellar Metallicity
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�• When a galaxy is forming stars, its 
stellar metallicity is regulated by its  
gas-phase metallicity (Peng & 
Maiolino 2014) 

• Stellar evolution tends to increase a 
galaxy’s gas-phase metallicity 

• Accretion of pristine halo gas tends to 
decrease it



Slow Quenching and Stellar Metallicity
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�• If you cut off a galaxy’s supply of 
halo gas, its gas-phase metallicity 
will sharply increase and so its 
overall stellar metallicity will too 

• Peng et al. 2015 and Trussler et al. 
2020 use this idea to explain the 
difference in [Z/H] between 
quenched and star-forming galaxies



Slow Quenching and Stellar Metallicity
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• Take a range of redshifts between (1 and 10). Give galaxies a stellar mass 
and a size based on observational measurements (or simple 
extrapolations). 

• Assume that the  slope of the mass/metallicity and potential/metallicity 
relations are the same at high redshift as they are today. 

• Give galaxies a metallicity based on this

A toy model of galaxy evolution



A toy model of galaxy evolution
• Evolve galaxies forward in steps of 10Myrs.  

• Star-forming galaxies form a set amount of mass each timestep which places them 
on the main sequence of star formation 

• Assume they increase their size according to log(R) ~ 0.3 log(Mstar) (e.g. van 
Dokkum+2015) 

• Assume they increase their metallicity according to [Z/H] ~ 0.45
log(Potential) (based on my fit to the potential/metallicity plane)

Δ Δ

Δ Δ



A toy model of galaxy evolution

• Now have galaxies quench in a way which 
depends on their mass and size 

• Once galaxies quench, they stop growing in 
mass, size and metallicity 

• I’ve tried looking at quenching based on 
potential (m/r), and quenching based on 
surface mass density (m/r^2). A less obvious 
combination gave the best results- m/r^(3/2)
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A toy model of galaxy evolution
• Sample my galaxies to have the 

same mass-function as SAMI 

• Add in observational 
uncertainties as random scatter 

• Compare to the SAMI centrals, 
since SAMI satellites may have 
quenched due to environmental 
processes
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A toy model of galaxy evolution
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Work in progress!



A toy model of galaxy evolution
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• Slow quenching evolution in 
the mass-metallicity plane 
(Peng et al. & Trussler et 
al.)



A toy model of galaxy evolution
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• Toy model evolution in the 
mass-size plane



A toy model of galaxy evolution
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Conclusions

• I’ve measured stellar metallicity (and age) gradients for ~2k galaxies in the SAMI survey. 

• Whilst some authors have used similar data to conclude that quenching is slow, my toy model 
shows that quenching can be fast as long as a galaxy’s size influences the likelihood of 
quenching. This ties in with other recent work suggesting that extended galaxies quench later 
than “normal” sizes ones (Gupta et al. 2020) 

• The combination of mass - 1.5 times size is a bit strange. Perhaps hinting that some quenching 
processes depend on potential, some depend on surface mass density, and these “average out”? 

• There is still room for slow quenching processes!



Results- not using a Hierarchical Model
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